SHEAF COHOMOLOGY WITH BOUNDS AND BOUNDED HOLOMORPHIC FUNCTIONS

YUM-TONG SIU

Suppose \(U \) is the unit disc in \(\mathbb{C} \). For \(0 < r < 1 \) \(Q_r \) (or simply \(Q \)) is the annulus \(\{ z \in U \mid |z| > r \} \). A subvariety \(V \) of pure codimension 1 in \(U^N \) is called a Rudin subvariety if for some \(r \) \(V \cap Q^r = \emptyset \). A Rudin subvariety is called a special Rudin subvariety if there is \(\delta > 0 \) such that, for \(1 \leq k \leq N \), \((a', a_i, a'') \in (Q^{k-1} \times U \times Q^{N-k}) \cap V \), \(i = 1, 2, \) and \(a_i \neq a_j \), we have \(|a_i - a_j| \geq \delta \). If a holomorphic function \(f \) generates the ideal-sheaf of its zero-set \(E \), then we write \(Z(f) = E \). The Banach space of all bounded holomorphic functions on a reduced complex space \(X \) under the sup norm is denoted by \(H^\infty(X) \) and the norm of \(f \in H^\infty(X) \) is denoted by \(\| f \|_X \). The following two theorems were proved by W. Rudin [2] and H. Alexander [1] respectively.

Theorem 1. If \(V \) is a Rudin subvariety, then there is \(f \in H^\infty(U^N) \) such that \(Z(f) = V \).

Theorem 2. If \(V \) is a special Rudin subvariety, then there is a bounded linear map from \(H^\infty(V) \) to \(H^\infty(U^N) \) which extends every bounded holomorphic function on \(V \) to one on \(U^N \).

Cartan's Theorem B implies that an analytic hypersurface of a polydisc is the zero-set of a holomorphic function and that every holomorphic function on the hypersurface is induced by a holomorphic function on the polydisc. One can expect that some Theorem B with bounds would easily yield the above two theorems. In this note we prove a simple theorem on sheaf cohomology with bounds (Theorem 3 below) which can imply Theorems 1 and 2. This gives us more perspective proofs of these two theorems.

Suppose \(X \) is a reduced complex space and \(\mathcal{O} \) is the structure-sheaf of \(X \times U^N \). Let \(W_k = X \times U^{k-1} \times Q \times U^{N-k}, 1 \leq k \leq N, \) and \(\mathcal{W} = \{ W_k \} \). For \(\nu \geq 0 \) and \(1 \leq i_0, \ldots, i_\nu \leq N \) \(W_{i_0} \cap \cdots \cap W_{i_\nu} \) denotes \(W_{i_0} \cap \cdots \cap W_{i_\nu} \). If \(f \in C^\infty(\mathcal{W}, \mathcal{O}) \), then \(f_{i_0, \ldots, i_\nu} \in \Gamma(W_{i_0} \cap \cdots \cap W_{i_\nu}, \mathcal{O}) \) denotes the value of \(f \) at the simplex \((W_{i_0}, \ldots, W_{i_\nu}) \) of the nerve of \(\mathcal{W} \). Let \(\rho = 2/(1 - r) \) and for \(1 \leq \nu < N \) let

\[
\sigma_\nu = \sum_{\mu=1}^{N-\nu} \binom{N}{\mu} (\nu + 1)^{\nu-1} \rho^\mu.
\]

Received by the editors March 11, 1968.
Lemma 1. Suppose f is a bounded holomorphic function on $X \times Q$ whose absolute value is bounded by a positive number K. Suppose for $w \in X f(w, z) = \sum_{\mu > 0} h_{\mu}(w)z^\mu$ is the Laurent series expansion of f in z (where z is the coordinate function of Q). Let $g(w, z) = \sum_{\mu > 0} h_{\mu}(w)z^\mu$ on $X \times Q$. Then $\|g\|_{X \times Q} \leq K$.

Proof. Fix $(w, z) \in X \times Q$. Choose arbitrarily two positive numbers a and b such that $r < a < |z| < b < 1$. We need only prove that $|g(w, z)| \leq 2bK/(b-a)$, because the result follows then from letting $a \to r$ and $b \to 1$.

Case (i). $|z| \leq (a+b)/2$. Then $|f-z| \leq (b-a)/2$ for $|f| = b$.

\[
|g(w, z)| = \left| \frac{1}{2\pi i} \int_{|z|=b} \frac{f(w, \xi)}{\xi - z} \, d\xi \right| \leq \frac{2b}{b-a} K.
\]

Case (ii). $|z| \geq (a+b)/2$. Then $|f-z| \leq (b-a)/2$ for $|f| = a$.

\[
|f(w, z) - g(w, z)| = \left| \frac{1}{2\pi i} \int_{|\xi|=a} \frac{f(w, \xi)}{\xi - z} \, d\xi \right| \leq \frac{2a}{b-a} K.
\]

Hence $|g(w, z)| \leq 2bK/(b-a)$. Q.E.D.

Theorem 3. For $1 \leq \nu < N$ there exists a linear map $\phi: B^r(\mathcal{M}, \theta) \to C^{r-1}(\mathcal{B}, \theta)$ over the ring of all holomorphic functions on X such that

(i) $\phi\theta = \text{the identity map on } B^r(\mathcal{M}, \theta)$, and

(ii) if $f \in B^r(\mathcal{M}, \theta)$ and $\|f_{i_0, \ldots, i_{\nu-1}}\|_{W_{i_0, \ldots, i_{\nu-1}}} \leq K$ for $1 \leq i_0, \ldots, i_{\nu-1} \leq N$, then $\|\phi(f)_{i_0, \ldots, i_{\nu-1}}\|_{W_{i_0, \ldots, i_{\nu-1}}} \leq K$.

Proof. First we define for $1 \leq i \leq N$ and $0 \leq \nu < N$ a linear map $e_i: C^r(\mathcal{M}, \theta) \to C^{r-1}(\mathcal{B}, \theta)$ over the ring of all holomorphic functions on X as follows: Suppose $f \in C^r(\mathcal{M}, \theta)$. If $f_{i_0, \ldots, i_{\nu-1}} = \sum_{\mu > 0} h_{\mu} z_i^\mu$ is the Laurent series expansion of $f_{i_0, \ldots, i_{\nu-1}}$ in z_i (where z_i is the ith coordinate function of U_i), then $(e_i(f))_{i_0, \ldots, i_{\nu-1}} = \sum_{\mu > 0} h_{\mu} z_i^\mu$. By applying Lemma 1 with X replaced by the product of X and U_i, we have $\|e_i(f)_{i_0, \ldots, i_{\nu-1}}\|_{W_{i_0, \ldots, i_{\nu-1}}} \leq K$ for $1 \leq i_0, \ldots, i_{\nu-1} \leq N$. Observe that $(1 - e_i)(f)_{i_0, \ldots, i_{\nu-1}} = 0$ if $i \neq i_0, \ldots, i_\nu$. For $0 \leq \nu < N - 1$ we have $(1 - e_i) \circ (1 - e_{i_\nu}) \circ \cdots \circ (1 - e_{i_0}) = 0$ on $C^{r-1}(\mathcal{M}, \theta)$, because for any $1 \leq i_0, \ldots, i_\nu \leq N$ there exists $1 \leq i \leq N$ such that $i \neq i_0, \ldots, i_\nu$. Since e_i commutes with θ, for $1 \leq \nu < N$ we have $1 = (1 - e_i) \circ (1 - e_{i_\nu}) \circ \cdots \circ (1 - e_{i_0}) = 0$ on $B^r(\mathcal{M}, \theta)$.

Next we define for $1 \leq i \leq N$ and $1 \leq \nu < N$ a linear map $k_i: C^r(\mathcal{M}, \theta) \to C^{r-1}(\mathcal{B}, \theta)$ over the ring of all holomorphic functions on X as follows: If $f \in C^r(\mathcal{M}, \theta)$, then set $(k_i(f))_{i_0, \ldots, i_{\nu-1}}$ to be the holomorphic function on $W_{i_0, \ldots, i_{\nu-1}}$ whose restriction to $W_{i_0, \ldots, i_{\nu-1}}$ is $(e_i(f))_{i_0, \ldots, i_{\nu-1}}$. Straightforward computation shows that for $1 \leq i \leq N$ and $1 \leq \nu < N$ we have $e_i = \delta k_i - k_i \delta$ on $C^r(\mathcal{M}, \theta)$. Hence for $1 \leq \nu < N$ we have $(1 - \delta k_i) \circ (1 - \delta k_{i_\nu}) \circ \cdots \circ (1 - \delta k_0) = 0$ on $B^r(\mathcal{M}, \theta)$. For $1 \leq \nu < N$...
define \(\phi_r : B^r(\mathbb{R}, \emptyset) \to C^{-1}(\mathbb{R}, \emptyset) \) by
\[
\phi_r = \sum_{\mu=1}^{N} (-1)^{n-1} \sum_{i_1 < \ldots < i_n} k_{i_1} \delta k_{i_2} \cdots \delta k_{i_n}.
\]
Then \(\phi_r \) satisfies the requirement. Q.E.D.

Remark. By using \(\sup |\text{Re}\phi(f)_{i_3} \cdots_{i_m}| \) on \(W_{i_3} \cdots_{i_m} \) instead of using \(\|\phi(f)_{i_3} \cdots_{i_m}\|_{W_{i_3} \cdots_{i_m}} \), a theorem similar to Theorem 3 can be proved. We need only prove a lemma which corresponds to Lemma 1 but uses sup norms of the real parts instead. To do this, we observe that \(f \mapsto \text{Re} \, f \) defines a continuous \(R \)-linear injection with closed image from the Fréchet space \(E \) of all holomorphic functions on \(Q \) whose constant coefficients in the Laurent series expansions are real to the Fréchet space of all harmonic functions on \(Q \). Hence, for \(r < a < b < 1 \), there exists a constant \(C \) such that, if \(f \in E \) and \(\sup |\text{Re}\, f| \leq K \), then \(|f(z)| \leq CK \) on \(a \leq |z| \leq b \). The desired lemma follows from an argument analogous to the proof of Lemma 1, but this time we leave \(a \) and \(b \) fixed instead of letting \(a \to r \) and \(b \to 1 \) and do not restrict \(|z| \) to \((a, b)\).

Proof of Theorem 1. By Cartan's Theorem B there is a holomorphic function \(\tilde{f} \) on \(U^N \) such that \(Z(\tilde{f}) = V \). We can assume \(V \cap (Q_r)^N \neq \emptyset \) for some \(r' < r \). We are going to prove (1)* by induction on \(k \).

On \(U^k \times Q^{N-k} \) (and likewise on products obtained by permuting the \(N \) factors) we can construct a bounded holomorphic function \(f^{(k)} \) such that \(Z(f^{(k)}) = (U^k \times Q^{N-k}) \cap V \) and \((f^{(k)})^{-1} \) is bounded on \(Q^N \).

\(Q^N \cap V = \emptyset \) implies that \((U \times Q^{N-1}) \cap V \) is an analytic cover over \(Q^{N-1} \) of, say, \(n \) sheets. There exists a proper subvariety \(A \) in \(Q^{N-1} \) and locally defined holomorphic functions \(g^{(1)}, \ldots, g^{(n)} \) on \(Q^{N-1} \) such that \((U \times (Q^{N-1} - A)) \cap V = \{(z_1, \ldots, z_N) \in U \times (Q^{N-1} - A) | z_1 = g^{(i)}(z_2, \ldots, z_N) \text{ for some } i \} \). The bounded holomorphic extension \(f^{(1)} \) on \(U \times Q^{N-1} \) of \(\prod_{i=1}^{n} (z_i - g^{(i)}(z_2, \ldots, z_N)) \) satisfies \(Z(f^{(1)}) = (U \times Q^{N-1}) \cap V \) and \((f^{(1)})^{-1} \) is bounded on \(Q^N \). (1)* is proved. Suppose (1)* is true for \(1 \leq k < m \). Then for \(1 \leq i \leq m \) we can construct a bounded holomorphic function \(f_i \) on \(G_i = U^{i-1} \times Q \times U^{m-i} \times Q^{N-m} \) such that \(Z(f_i) = G_i \cap V \) and \(f_i^{-1} \) is bounded on \(Q^N \). By replacing \(f_i \) by the product of \(f_i \) with suitable powers of \(z_{i}, z_{m+1}, \ldots, z_N \), we can assume that we can select a regular branch \(h_i \) of \(\log(f_i/f_i) \) on \(G_i \). Since \(h_i - h_j = \log(f_j/f_i) \) has bounded real part on \(G_i \cap G_j \), by the Remark following Theorem 3 we can construct holomorphic functions...
\(h_i \) on \(G_i \) with bounded real parts such that \(h_i - h_j = a \) branch of \(\log(f_i/f_j) \). The holomorphic function \(f^{(m)} \) on \(U^m \times Q^{N-m} \) which agrees with \(f_i \), \(\exp(h_i) \) on \(G_i \) satisfies \(Z(f^{(m)}) = (U^m \times Q^{N-m}) \cap V \) and is bounded. Moreover, \((f^{(m)})^{-1} \) is bounded on \(Q^N \). (1)_m is proved. The theorem follows from (1). Q.E.D.

Proof of Theorem 2. By Theorem 1 we can construct \(g \in H^\omega(U^n) \) such that \(Z(g) = V \). The construction implies that \(g^{-1} \) is bounded on \(Q^N \). Take \(f \in H^\omega(V) \). By Cartan's Theorem B, \(f \) is the restriction to \(V \) of a holomorphic function \(f \) on \(U^n \). We are going to prove (2)_k by induction on \(k \).

On \(U^k \times Q^{N-k} \) (and likewise on products obtained by permuting the \(N \) factors) we can construct a bounded holomorphic function \(f^{(k)} \) which agrees with \(f \) on \((U^k \times Q^{N-k}) \cap V \).

From the conditions of special Rudin subvarieties we conclude that \((U^m \times Q^{N-m}) \cap V \) is an unbranched analytic cover over \(Q^{N-1} \) of, say, \(n \) sheets. There are locally defined holomorphic functions \(g^{(i)} \), \(\cdots \), \(g^{(n)} \) on \(Q^{N-1} \) such that \((U^m \times Q^{N-m}) \cap V = \{(z_1, \ldots, z_N) \in U^m \times Q^{N-1} | z_i = g^{(i)}(z_2, \ldots, z_N) \text{ for some } i \} \). The function \(f^{(1)}(z_1, \ldots, z_N) = \sum_{i=1}^n f_i(g^{(i)}(z_2, \ldots, z_N), z_2, \ldots, z_N) - g^{(i)}(z_2, \ldots, z_N) \) is well defined, agrees with \(f \) on \((U^m \times Q^{N-m}) \cap V \), and is bounded. (2)_1 is proved. Suppose (2)_k is true for \(1 \leq k < m \). We can construct bounded holomorphic functions \(f_i \) on \(G_i = U_i^1 \times Q \times U^m-i \times Q^{N-m} \), \(1 \leq i \leq m \), such that \(f_i = f \) on \(G_i \cap V \). Let \(h_i = (f_i - f_j)/g \) on \(G_i \). Since \(h_i - h_j = (f_i - f_j)/g \) is bounded on \(G_i \cap G_j \) (because \(g^{-1} \) is bounded on \(Q^N \)), we can construct by Theorem 3 \(h_i \in H^\omega(G_i) \) such that \(h_i - h_j = h_i - h_j = (f_i - f_j)/g \). The holomorphic function \(f^{(m)} \) on \(U^m \times Q^{N-m} \) which agrees with \(f_i + gh_i \) on \(G_i \) is bounded and agrees with \(f \) on \((U^m \times Q^{N-m}) \cap V \). (2)_m is proved. By (2)_N we can construct \(f^{(N)} \in H^\omega(U^N) \) which agrees with \(f \) on \(V \). It is clear from the constructions that the map defined by \(f \mapsto f^{(N)} \) is a bounded linear map from \(H^\omega(V) \) to \(H^\omega(U^N) \). Q.E.D.

The author wishes to thank H. Alexander for pointing out some errors in an earlier version of this note.

References

University of Notre Dame