1. Introduction. In [1] Foguel provides a counterexample to Nagy's question of whether every power bounded operator on a Hilbert space is similar to a contraction. Generally questions about powers of operators have exponential analogues which can be phrased as questions about \((C_0)\) semigroups. The purpose of this note is to provide a counterexample to the semigroup analogue of Nagy's question—that is, to construct a uniformly bounded \((C_0)\) semigroup on a Hilbert Space \(H\) whose generator is not similar to a dissipative operator. (An operator \(L\) is dissipative on \(H\) if \(\langle Ly, y \rangle + \langle y, Ly \rangle \leq 0\) for all \(y \in \text{Domain } (L)\).) The method used depends strongly on Foguel's ideas and utilizes the viewpoint presented in Halmos' note [2] on Foguel's counterexample.

2. A necessary condition for similarity to a dissipative operator. Let \(S(t)\) denote a \((C_0)\) semigroup and \(L\) its infinitesimal generator on \(H\). We will need the characterization of dissipative semigroup generators presented by Phillips [3, p. 203] which says that \(L\) is dissipative if and only if \(\|S(t)\| \leq 1\) for all \(t \geq 0\).

Paralleling Foguel we define

\[W(L) = \{ x \in H : \text{weak limit } (t \to \infty) S(t)x = 0 \}. \]

As a necessary condition for similarity to a dissipative operator we prove:

Lemma 1. If \(L\) is similar to a dissipative operator, then \(W(L) \cap [W(L^*)]^\perp = \{0\} \).

Proof. The argument is broken down into three parts in the manner of Halmos.

Part I. If \(A\) generates a group of unitary operators \(U(t), -\infty < t < \infty\), then \(W(A) = W(A^*)\) where \(A^*\) generates the group \(U^*(t)\). To see this, represent \(U(t)\) as multiplication by \(u^t\) on some \(L_2(\mu)\) isometrically isomorphic to \(H\), where \(u\) is a measurable function of constant modulus one. Showing \(W(A) \subseteq W(A^*)\) means showing that
A SEMIGROUP ANALOGUE OF FOGUEL'S COUNTEREXAMPLE

$\int u'f'g'd\mu \to 0$ for all $g \in L_2(\mu)$ implies $\int u'f'h'd\mu \to 0$ for all $h \in L_2(\mu)$. This follows by setting, for each h, $g = (\text{sgn} f)^* h$ and taking complex conjugates. By symmetry $W(A^*) \subseteq W(A)$, so equality holds.

Part II. If D is dissipative and hence generates a contraction semigroup $C(t)$, then $W(D) = W(D^*)$. For this argument, the theory of strong unitary dilations [4, p. 15] yields a strongly continuous group $U(t)$ of unitary operators on a Hilbert space $H' \supset H$ such that $PU(t)u = C(t)$ for all $t \geq 0$ where P is the orthogonal projection of H' onto H. Furthermore H' is minimal in the sense that it is spanned by the elements $\{ U(t)x : x \in H \}$ and $-\infty < t < \infty$. Define $H_s = \{ y \in H' : \langle U(t)x, y \rangle \to 0 \text{ as } t \to \infty \}$. For $x \in W(D)$, $\langle C(t)x, y \rangle = \langle PU(t)x, y \rangle = \langle U(t)x, Py \rangle = \langle U(t)x, y \rangle \to 0$ as $t \to \infty$ for all $y \in H$. Hence $H \subseteq H_s$ whenever $x \in W(D)$. Furthermore, H_s is a linear manifold invariant under $U(t)$ and $U^*(t)$, $-\infty < t < \infty$, and since H' is minimal as stated above, it follows that $x \in W(D)$ implies $H_s = H'$. Call A the generator of $U(t)$ and note that we then have $W(D) \subseteq W(A) \cap H$ where $W(A)$ is defined on H'. Conversely, $x \in W(A) \cap H$ implies $\langle U(t)x, y \rangle \to 0$ as $t \to \infty$ for all $y \in H'$. Thus for $y \in H$, $\langle (C(t)x, y) = \langle PU(t)x, y \rangle = \langle U(t)x, Py \rangle = \langle U(t)x, y \rangle \to 0$ as $t \to \infty$, so that $x \in W(D)$. This shows that $W(A) \cap H = W(D)$ and using the same fact for A^* and D^* and Part I, $W(D) = W(D^*)$ follows.

Part III. The completion of the lemma now follows by noting that if $L = SDS^{-1}$, D dissipative, then $W(L) = S(W(D))$ and $[W(L^*)]^\perp = S([W(D^*)]^\perp)$. Since, by Part II, $W(D) = W(D^*)$ so that $W(D) \cap [W(D^*)]^\perp = \{ 0 \}$, we obtain $W(L) \cap [W(L^*)]^\perp = \{ 0 \}$.

3. **Construction of the counterexample.** Let H be the Hilbert space $L_2([0, \infty))$ and let $V(t)$ be right translation by t on H, so for $t \geq 0$,

$$V(t)f(x) = f(x - t) \quad \text{when } x \geq t,$$

$$= 0 \quad \text{otherwise},$$

and

$$V^*(t)f(x) = f(x + t).$$

It is easy to check that $V(t)$ and $V^*(t)$ are (C_0) semigroups of operators whose norms are identically one.

For each $t > 0$, define the integer $k_0 = k_0(t)$ by requiring $4^k t < 4^{k+1}$. For each integer $k > k_0(t)$ define the interval $I_k(t) = (4^k - t, 4^k]$ and let $I_{k_0}(t) = [0, 2 \cdot 4^k - t]$. Define the operator $P(t)$ on H for each $t \geq 0$ by $P(0) = 0$ and

$$P(t)f(x) = f(2 \cdot 4^k - t - x) \quad \text{when } x \in I_k(t), \quad k \geq k_0(t),$$

$$= 0 \quad \text{otherwise.}$$
By inspection $P(t)$ is well defined and $\|P(t)\| \leq 1$ for all $t \geq 0$.

Let $H_2 = H \oplus H$ with the usual direct sum inner product: $\langle (f, g), (h, k) \rangle = \langle f, h \rangle + \langle g, k \rangle$. Define the operators $S(t), t \geq 0$, on H_2 by

$$S(t) = \begin{pmatrix} V^*(t) & P(t) \\ 0 & V(t) \end{pmatrix},$$

i.e., $S(t)(f, g) = (V^*(t)f + P(t)g, V(t)g)$.

Since $\|V(t)\| = \|V^*(t)\| = 1 \geq \|P(t)\|$ for all $t \geq 0$ it follows that $\|S(t)\| \leq 2$ for all $t \geq 0$. We now establish that $S(0) = I$ and that $S(t)$ has the semigroup property $S(u + t) = S(u)S(t)$ for all $u, t > 0$. Since $P(0) = 0$, we have $S(0) = I$. The semigroup property translates into the following equality:

$$(V^*(u)P(t)g(x) + P(u)V(t)g(x)) = P(u + t)g(x)$$

for all g in H and $u, t \geq 0$, where the fact that $V(t)$ and $V^*(t)$ are semigroups has been used. Rewriting (1) with the definitions of $V(t)$, $V^*(t)$, and $P(t)$, we must prove that $h_1(x) + h_2(x) = h_3(x)$ where

$$h_1(x) = g(2 \cdot 4^k - t - x - u) \quad \text{when } x + u \in I_k(t), \quad k \geq k_0(t),$$
$$= 0 \quad \text{otherwise};$$

$$h_2(x) = g(2 \cdot 4^k - t - x - u) \quad \text{when } x \in I_k(u), \quad x \leq 2 \cdot 4^k - t - u, \quad k \geq k_0(u),$$
$$= 0 \quad \text{otherwise};$$

$$h_3(x) = g(2 \cdot 4^k - t - x - u) \quad \text{when } x \in I_k(u + t), \quad k \geq k_0(u + t),$$
$$= 0 \quad \text{otherwise}.$$

Letting g, u, t, x be fixed but arbitrary, and noting that the arguments of $h_1, h_2,$ and h_3 are equal, we need only verify that the conditions imposed on x for these functions enable us to obtain the desired equality. Since the computations are not entirely obvious we include some of them, splitting the proof into three parts.

(1) If $h_1(x) \neq 0$, then $h_1(x) = h_3(x)$. Indeed, if $h_1(x) \neq 0$, then $x + u \in I_k(t), \quad k \geq k_0(t)$. First suppose $k > k_0(t)$ so that $t \leq 4^k$ and $x \in (4^k - t - u, 4^k - u]$ (and $x \geq 0$). If $4^k - t - u \geq 0$, then $u + t \leq 4^k$ and $k > k_0(u + t)$ so that $x \in I_k(u + t)$ and $h_3(x) = h_3(x)$. If $4^k - t - u < 0$, then $4^k - u + t \leq 4^k + 1$ (since $u \leq 4^k$ and $t \leq 4^k$) and $k_0(u + t) = k$. In this case, $4^k - t \geq 0$ implies $2 \cdot 4^k - t - u \leq 4^k - u$ so that $x \in I_{k_0}(u + t)$ and again $h_1(x) = h_3(x)$. Finally, suppose $k = k_0(t)$. Then $x \in [0, 4^k - u - t]$ implies $k = k_0(u + t)$ and $x \in I_{k_0}(u + t)$, so $h_1(x) = h_3(x)$. Similar arguments show that if $h_2(x) \neq 0$, then $h_2(x) = h_3(x)$.

(2) Either $h_1(x)$ or $h_2(x)$ must be zero (for each fixed $x, t,$ and u). For if both were nonzero we would have $x + u \in I_k(t)$ for some $k \geq k_0(t)$.
and \(x \in I_j(u)\) for some \(j \geq k_0(u)\). If \(k > k_0(t)\) and \(j > k_0(u)\) then \((4^k - u - t, 4^k - u]\) and \((4^j - u, 4^j]\) clearly have empty intersection, yielding a contradiction. Likewise, if \(k > k_0(t)\) and \(j = j_0(u)\), we have \(4^j < u \leq 4^{j+1}\) and \(u + t \leq 2 \cdot 4^j\). Hence \(t < 4^j\), from which it follows that \(k < j\) and \(2 \cdot 4^j > 4^k\) and thus \(2 \cdot 4^j - u - t > 4^k - u - t\). Once again \(x + u \in I_k(t)\) and \(x \in I_j(u)\) are incompatible. The remaining two cases in which \(k = k_0(t), j > k_0(u)\) and \(k = k_0(t), j = k_0(u)\) follow similarly and we conclude that either \(h_1(x)\) or \(h_2(x)\) must be zero.

(3) If \(h_3(x) \neq 0\) then either \(h_1(x)\) or \(h_2(x)\) is nonzero. Here we have \(x \in I_k(u + t),\ k \geq k_0(u + t)\). If \(k > k_0(u + t)\), then \(k > k_0(u)\) and \(k > k_0(t)\) so that \(I_k(u + t) = I_k(u) \cup [x : x + u \in I_k(t)]\). Thus one of \(h_1(x)\) and \(h_2(x)\) must be equal to \(h_2(x)\) and hence nonzero. Finally if \(k = k_0(u + t)\), then \(x \in I_k(u + t)\). If either \(k_0(t) = k_0(u + t)\) or \(k_0(u) = k_0(u + t)\) then \(x \in I_k(t)\) or \(x \in I_k(u)\) and \(h_1(x)\) or \(h_2(x)\) is nonzero. If both \(k_0(t) < k_0(u + t)\) and \(k_0(u) < k_0(u + t)\), then \(I_k(u + t) \subseteq I_k(u) \cup [x : x + u \in I_k(t)]\) and again one of the \(h_1(x)\) and \(h_2(x)\) must be nonzero.

Taking (1), (2), and (3) together we obtain \(h_1(x) + h_2(x) = h_3(x)\) so that \(S(t)\) is a semigroup.

To show that \(S(t)\) is a \((C_0)\) semigroup we must show that for each \((f, g)\) in \(H_2\), \(S(t)(f, g)\) is continuous in \(t\) on \([0, \infty)\). By the semigroup property this reduces to showing that \(\|S(t)(f, g) - (f, g)\| \to 0\) as \(t \to 0\). To this end we have

\[
\begin{align*}
\|S(t)(f, g) - (f, g)\|^2 &= \|(V^*(t)f + P(t)g - f, V(t)g - g)\|^2 \\
&= \|V^*(t)f + P(t)g - f\|^2 + \|V(t)g - g\|^2 \\
&\leq 2\|V^*(t)f - f\|^2 + 2\|P(t)g\|^2 + \|V(t)g - g\|^2.
\end{align*}
\]

The first and third terms of the last line get small as \(t \to 0\) by the continuity of translation on \(L_2([0, \infty))\) (or equivalently since \(V(t)\) and \(V^*(t)\) are \((C_0)\) semigroups). Also \(\|P(t)g\| \to 0\) because \(\|P(t)g\| = \|X(t)g\|\) where \(X(t)\) is multiplication by the characteristic function of \(U^*_{t=t_0} I_k(t)\), and \(\|X(t)g\| \to 0\) by the Lebesgue dominated convergence theorem.

Thus \(S(t)\) is a uniformly bounded \((\|S(t)\| \leq 2 \text{ for all } t \geq 0)\) \((C_0)\) semigroup and by the general theory of \((C_0)\) semigroups, \(S(t)\) has an infinitesimal generator \(L\) defined for \(y \in H_2\) by

\[
Ly = \lim_{t \to 0} \frac{S(t)y - y}{t} \quad \text{whenever this limit exists.}
\]

Theorem. There exists a uniformly bounded \((C_0)\) semigroup \(S(t)\) whose generator \(L\) is not similar to a dissipative operator.

Proof. In view of Lemma 1 it suffices to show that
Setting \(g = \text{characteristic function of } (0, 1) \) and defining \(R = \{2 \cdot 4^k - 1 : k = 0, 1, 2, \cdots \} \), the definition of \(P(t) \) shows that \(P(r)g(x) = g(x) \) for all \(r \in R \). Indeed \(I_{h_i}(r) = [0, 1] \) for such \(r \). Now using the fact that \(\langle V(r)g, h \rangle \to 0 \) as \(r \to \infty \) for all \(h \in H \),

weak limit \((r \to \infty, r \in R)S(r)(0, g) = \) weak limit \((r \to \infty, r \in R)(g, V(r)g) = (g, 0) \).

Also for \((h, k) \in W(L^*) \),

\[
\langle (g, 0), (h, k) \rangle = \lim (r \to \infty, r \in R)\langle S(r)(0, g), (h, k) \rangle = \lim (r \to \infty, r \in R)\langle (0, g), S^*(r)(h, k) \rangle = 0
\]

by the definition of \((h, k) \in W(L^*) \). Thus \((g, 0) \in \left[W(L^*) \right] \perp \) and clearly \((g, 0) \in W(L) \), so \((g, 0) \in W(L) \cap \left[W(L^*) \right] \perp \) and \(L \) is not similar to a dissipative operator.

An investigation into the nature of the generator \(L \) of \(S(t) \) yields the following interesting result. The domain of \(L \) consists of all \((f, g) \in H_2 \) for which

1. \(g \) is (modulo null functions) absolutely continuous on \(H \), \(\lim_{x \to 0} g(x) = 0 \), and \(dg/dx \in H \).

2. \(f \) is absolutely continuous everywhere except possibly at the points \(4^k, k \) integral.

3. Letting \(h(x) = f(x) + \sum_{4^k < x} g(4^k) \), then \(dh/dx \in H \), so that the jumps of \(f \) at \(4^k \) are the negatives of the values \(g(4^k) \).

For \((f, g) \in \text{Domain } (L) \), \(L(f, g) = (dh/dx, -dg/dx) \).

In conclusion, the counterexample presented is a \((C_0) \) semigroup with unbounded generator. This leaves open the question of whether or not the (bounded) generator of a uniformly bounded, uniformly continuous semigroup must be similar to a dissipative operator.

References