FACTORIZATION OF CERTAIN MAPS UP TO HOMOTOPY

GEORGE KOZLOWSKI

If \(f: X \rightarrow Y \) is a map of a space \(X \) into a space \(Y \), we say that \(f \) is a \textit{local connection in dimension} \(n \), provided that for every point \(y \in Y \) and every neighborhood \(N \) of \(y \) there is a neighborhood \(V \subset N \) of \(y \) such that for \(0 \leq k \leq n-1 \) any map \(g: S^k \rightarrow f^{-1}V \) extends to a map \(g': B^{k+1} \rightarrow f^{-1}N \) and for any map \(g: S^n \rightarrow f^{-1}V \) the map \(fg: S^n \rightarrow V \) extends to a map \(h: B^{n+1} \rightarrow N \). Using star-refinements of open covers and a standard approximation technique we establish the following theorem (a slightly weaker form of which has been announced by Price [2]).

\textbf{Theorem 1.} Let \(Y \) be a metric space, and let \(f: X \rightarrow Y \) be a local connection in dimension \(n \) with dense image. Let \(L \) be a subcomplex of a finite simplicial complex \(K \) such that \(\dim (K-L) \leq n \), and let \(g: L \rightarrow X \) and \(h: K \rightarrow Y \) be maps such that \(h|L = fg \). Then there is a map \(g': K \rightarrow X \) such that \(g'|L = g \) and \(fg' \) is homotopic to \(h \) relative to \(L \). If \(d \) is any metric for \(Y \) and \(\epsilon > 0 \), the map \(g' \) and the homotopy \(H \) may be chosen so that for all points \(p \in K \) the diameter (with respect to \(d \)) of \(H(p \times I) \) is <\(\epsilon \).

This implies that \(f \) is an \(n \)-equivalence; i.e., \(f \) maps the set of path-components of \(X \) bijectively to the set of path-components of \(Y \), and that for every \(x \in X \), \(f|\pi_k(X, x) \subset \pi_k(Y, f(x)) \) is an isomorphism for \(1 \leq k \leq n-1 \) and an epimorphism for \(k = n \). Since \(f|f^{-1}W \) is also a local connection in dimension \(n \) for every open set \(W \subset Y \), it follows that \(Y \) is \(LC^n \). Using these facts and the lemmas for the proof of Theorem 1 we obtain sharper forms of known results:

\textbf{Theorem 2 (cf. Smale [3]).} Let \(X \) be a paracompact \(LC^n \) space, let \(Y \) be a metric space, and let \(f: X \rightarrow Y \) be a closed map of \(X \) onto \(Y \) such that \(f^{-1}(y) \) is \(LC^{n-1} \) and \((n-1)\)-connected for every \(y \in Y \). Then \(Y \) is \(LC^n \), and \(f \) is an \(n \)-equivalence.

\textbf{Theorem 3 (cf. Kwun [1]).} Let \(M \) be a manifold, and let \(G \) be an upper semicontinuous decomposition of \(M \) into cellular sets. If the

\footnotesize{Received by the editors February 14, 1968.

The author was supported by an NSF Graduate Fellowship and by NSF GP-6462.

These results are contained in the author's Ph.D. Thesis (University of Michigan), written under the direction of Professor Morton Brown.}
decomposition space M/G is finite dimensional, it is a homotopy manifold.

1. All complexes will be finite simplicial complexes, and (K, L) will be called an n-pair provided that L is a subcomplex of K and $\dim (K - L) \leq n$. The q-skeleton of K will be denoted K^q. If \mathcal{U} is a collection of open sets in Y, then a map $h: K \to Y$ (a homotopy $H: K \times I \to Y$) will be said to map K (resp. $K \times I$) into \mathcal{U} provided that for every (closed) simplex α of K there is $U \in \mathcal{U}$ with $h(\alpha) \subset U$ (resp. $H(\alpha \times I) \subset U$). Associated with \mathcal{U} is the collection $\mathcal{U}^* = \{ U^* | U \in \mathcal{U} \}$, where $U^* = \bigcup \{ U' \in \mathcal{U} | U \cap U' \neq \emptyset \}$. A map $f: X \to Y$ will be said to be a strong local connection in dimension n, if for every point $y \in Y$ and every neighborhood N of y there is a neighborhood $V \subset N$ of y such that for $0 \leq k \leq n$ any map $g: S^k \to f^{-1}V$ extends to a map $g': B^{k+1} \to f^{-1}N$.

Let \mathcal{U} and \mathcal{V} be open covers of a space X such that \mathcal{V} refines \mathcal{U}, and let $f: X \to Y$ be a map. For every nonnegative integer n we define assertions $E(\mathcal{U}, \mathcal{V}; n)$, $H(\mathcal{U}, \mathcal{V}; n)$, and $H(\mathcal{U}, \mathcal{V}; f; n)$ as follows:

$E(\mathcal{U}, \mathcal{V}; n)$. If (K, L) is any n-pair and $g: L \to X$, $h: K \to Y$ are any maps such that h extends fg and maps $cl(K - L)$ into the collection $\{ V \in \mathcal{V} | f(X) \cap V \neq \emptyset \}$, then there is an extension $g': K \to X$ of g such that for every simplex α of $cl(K - L)$ there is $U \in \mathcal{U}$ with $fg'(\alpha) \subset h(\alpha) \subset U$.

$H(\mathcal{U}, \mathcal{V}; n)$. If (K, L) is any n-pair and $g: L \to X$, $g': K \to X$, $g'': K \to X$ are any maps such that $g = g'|L = g''|L$ and for every simplex α of K there is $V \in \mathcal{V}$ with $g'(\alpha) \subset g''(\alpha) \subset f^{-1}V$, then there is a homotopy $G: g' \simeq g''$ relative to L which maps $K \times I$ into $f^{-1}\mathcal{U} = \{ f^{-1}U | U \in \mathcal{U} \}$.

$H(\mathcal{U}, \mathcal{V}; f; n)$. If (K, L) is any n-pair and $g: L \to X$, $g': K \to X$, $g'': K \to X$ are any maps such that $g = g'|L = g''|L$ and for every simplex α of K there is $V \in \mathcal{V}$ with $g'(\alpha) \subset g''(\alpha) \subset f^{-1}V$, then there is a homotopy $H: fg' \simeq fg''$ relative to L which maps $K \times I$ into \mathcal{U}.

Lemma 1. Let Y be paracompact, and let $f: X \to Y$ be a strong local connection in dimension n. Then for any open cover \mathcal{V} of Y there is an open cover \mathcal{U} of Y refining \mathcal{V} such that both $E(\mathcal{U}, \mathcal{V}; n+1)$ and $H(\mathcal{U}, \mathcal{V}; f; n)$ hold.

Proof. For $n = -1$ there are no conditions on the map f, and both assertions hold for $\mathcal{U} = \mathcal{U}$. Assume that the lemma is true for $n < k$, and let $f: X \to Y$ be a strong local connection in dimension k. If \mathcal{U} is an open cover of Y, let \mathcal{W} be an open cover such that for each $W \in \mathcal{W}$ there is $U \in \mathcal{U}$ such that $W^* \subset U$ and any map $S^k \to f^{-1}(W^*)$ extends to a map $B^{k+1} \to f^{-1}U$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Let \mathcal{V} be an open cover refining \mathcal{W} such that both $E(\mathcal{V}, \mathcal{W}; k)$ and $H(\mathcal{V}, \mathcal{W}; k-1)$ hold. Then both $E(\mathcal{V}, \mathcal{U}; k+1)$ and $H(\mathcal{V}, \mathcal{U}; k)$ hold. In fact if K, L, g, h are as in the first assertion, there is an extension $g''': L \cup K^k \to X$ such that for every k-simplex β of $cl(K-L)$ there is $W(\beta) \subseteq \mathcal{W}$ with $f g''''(\beta) \cup h(\beta) \subseteq W(\beta)$. Let α be a $(k+1)$-simplex of $K-L$, and let $W \in \mathcal{W}$ be such that $h(\alpha) \subseteq W$. If $\beta < \alpha$, then $W \cap W(\beta) \neq \emptyset$. It follows that $f g''''(\partial \alpha) \subseteq W^*$; hence there is $U \in \mathcal{U}$ such that $W^* \subseteq U$, and there is an extension $\alpha \to f^{-1} U$ of $g''': \partial \alpha \to f^{-1}(W^*)$.

Combining such extensions gives the desired map $g': K \to X$; thus $E(\mathcal{V}, \mathcal{U}; k+1)$ holds. On the other hand if K, L, g, g', g'' are as in the second assertion, let $G': (L \cup K^{k-1}) \times I \to X$ be a homotopy as in $H(\mathcal{V}, \mathcal{W}; k-1)$, and extend G' to $G'': K \times \{0, 1\} \cup (L \cup K^{k-1}) \times I \to X$ by $G''(p, 0) = g'(p)$ and $G''(p, 1) = g''(p)$ for all points $p \in K$. For any k-simplex α of K there is $W \in \mathcal{W}$ such that $G''(\alpha \times \{0, 1\}) \subseteq f^{-1}(W^*)$; thus $G''(\partial (\alpha \times I)) \subseteq f^{-1}(W^*)$. Then G'' extends to a homotopy $G: K \times I \to X$ which maps $K \times I$ into \mathcal{U}, which proves that $H(\mathcal{V}, \mathcal{U}; k)$ holds.

Lemma 2. Let Y be paracompact, and let $f: X \to Y$ be a local connection in dimension n. Then for any open cover \mathcal{U} of Y there is an open cover \mathcal{V} refining \mathcal{U} such that $H(\mathcal{V}, \mathcal{U}; f; n)$ holds.

Proof. If $n = -1$, there is nothing to prove. Assume that the lemma is true for $n < k$, and let $f: X \to Y$ be a local connection in dimension k. Then f is a strong local connection in dimension $k-1$. If \mathcal{U} is an open cover of Y, let \mathcal{W} be an open cover such that for each $W \in \mathcal{W}$ there is $U \in \mathcal{U}$ such that $W^* \subseteq U$ and for any map $h: S^k \to f^{-1}(W^*)$ the map fh extends to a map $B^{k+1} \to U$. By Lemma 1 there is an open cover \mathcal{V} of Y refining \mathcal{W} such that $H(\mathcal{V}, \mathcal{W}; k-1)$ holds. To see that $H(\mathcal{V}, \mathcal{U}; f; k)$ holds consider K, L, g, g', and g'' as in the assertion, and let $G: (L \cup K^{k-1}) \times I \to X$ be a homotopy as in $H(\mathcal{V}, \mathcal{W}; k-1)$. Extend G to a map $G': K \times \{0, 1\} \cup (L \cup K^{k-1}) \times I \to X$ by $G'(p, 0) = g'(p)$ and $G'(p, 1) = g''(p)$, and observe that for every k-simplex α of $K-L$ there is $W \in \mathcal{W}$ with $f G'(\partial (\alpha \times I)) \subseteq W^*$. It follows that $f G'$ extends to a homotopy H which maps $K \times I$ into \mathcal{U}.

2. Proof of Theorem 1. Let Y have metric d. Using Lemmas 1 and 2 choose a sequence $\{\mathcal{V}_r\} 0 \leq r < \infty$ of open covers of Y such that mesh $\mathcal{V}_r < \epsilon/4(r+1)$, \mathcal{V}_{r+1} refines \mathcal{V}_r, $E(\mathcal{V}_{r+1}, \mathcal{V}_r; n)$ holds, and $H(\mathcal{V}_{r+1}, \mathcal{V}_r; f; n)$ holds. (For a given ϵ such a sequence provides the extension and the homotopy in all cases.)

If K, L, g, and h are as in Theorem 1, choose a sequence $\{K_r\} 1 \leq r < \infty$ of subdivisions of K such that K_{r+1} is a subdivision
of K_r and h maps K_r into \mathcal{U}_{r+1}. Using the fact that $E(\mathcal{U}_{r+1}, \mathcal{U}_r; n)$ holds, choose extensions $g_r: K_r \rightarrow X$ of g ($1 \leq r < \infty$) such that for every α in K_r there is $V \in \mathcal{U}_r$ with $f_{gr}(\alpha) \cup h(\alpha) \subseteq V$. Since mesh $\mathcal{U}_r < \varepsilon/4(r+1)$, $d(f_{gr}(p), h(p)) < \varepsilon/4(r+1)$ for all points $p \in K_r$.

Set $g' = g_l$, and construct H by "filling in" between g_r and g_{r+1} as follows. Let α be a simplex of K_r, and let $f_{gr}(\alpha) \cup h(\alpha) \subseteq V$ for some $V \in \mathcal{U}_r$. Consider α as a subcomplex of K_{r+1}, and observe that for every simplex β of α, there is $V' \in \mathcal{U}_r$ such that $f_{gr+1}(\beta) \cup h(\beta) \subseteq V'$; hence $f_{gr+1}(\alpha) \cup f_{gr}(\alpha) \subseteq V'$. Since $H(\mathcal{U}_r, \mathcal{U}_{r-1}; f; n)$ holds, there is a homotopy $H_r: f_{gr+1} \simeq f_{gr}$ relative to L, which may be considered as a map $H_r: K \times [1/(r+1), 1/r] \rightarrow Y$, such that the diameter of $H_r(\alpha \times [1/(r+1), 1/r])$ is $< \varepsilon/4r$ for every simplex α of K_r. This implies that $d(H_r(p, t), h(p)) < \varepsilon/2r$ for all $(p, t) \in K \times [1/(r+1), 1/r]$. Define $H_r: K \times I \rightarrow Y$ by $H_r(p, t) = H_r(p, t)$ for $1/(r+1) \leq t \leq 1/r$ and by $H_r(p, 0) = h(p)$. It is easy to check that H_r is a map and is in fact an ε-homotopy relative to L. This completes the proof.

3. Proof of Theorem 2. Since f is a closed map and $f^{-1}(y)$ is $(n-1)$-connected for every $y \in Y$, to show that f is a local connection in dimension n it suffices to show that for every open neighborhood U of $f^{-1}(y)$ there is an open neighborhood $V \subseteq U$ of $f^{-1}(y)$ such that for $0 \leq k \leq n$ any map $S^k \rightarrow V$ is homotopic in U to a map $S^k \rightarrow f^{-1}(y)$. Let A be the inverse set under f of a point of Y. Since for any closed LC$^n-1$ subset A of an LCn space X, the inclusion map $i: A \subseteq X$ is a local connection in dimension n, and since X is paracompact, Lemma 1 applies to $i: A \subseteq X$ and $1: X \subseteq X$. If U is an open neighborhood of A, let \mathcal{U} be the cover of X consisting of U and $X - A$, and \mathcal{W} be an open cover of X refining \mathcal{U} such that $H(\mathcal{W}, \mathcal{U}; n)$ holds for $1 \subseteq X \subseteq X$, and let \mathcal{W} be an open cover refining \mathcal{W} such that $E(\mathcal{U}, \mathcal{W}; n)$ holds for $i: A \subseteq X$.

Set $V = U \{ V' \in \mathcal{U} | V' \cap A \neq \emptyset \}$. For $0 \leq k \leq n$ triangulate S^k in some way as a complex K, and observe that for any map $h: K \rightarrow V$ there is a subdivision K' of K such that h maps K' into $\{ V' \in \mathcal{U} | V' \cap A \neq \emptyset \}$. It follows that there is a map $g: K' \rightarrow A$ such that for each α in K' there is $W \subseteq \mathcal{W}$ with $g(\alpha) \cup h(\alpha) \subseteq W$. Since $H(\mathcal{W}, \mathcal{U}; n)$ holds for $1 \subseteq X \subseteq X$, there is a homotopy $H: \mathcal{W} \times I \rightarrow X$ such that H maps $K' \times I$ into \mathcal{U}. Since $g(K') \subseteq A$, $H(K' \times I) \subseteq U$. This completes the proof.

4. Proof of Theorem 3. We recall that M is an n-manifold, if it is a separable metric space each point of which has an open neighborhood homeomorphic to R^n and that a subset A of M is cellular, if $A = \bigcap_{i=1}^{\infty} Q_i$, where Q_i is a closed n-cell ($1 \leq j < \infty$) and $\text{int } Q_i \supseteq Q_{i+1}$.
If \(G \) is an upper semicontinuous decomposition of \(M \) into cellular subsets, then it is well known that \(M/G \) is a separable metric space and that the projection \(P: M \to M/G \) is a closed map. It follows directly from the definition of cellularity that \(P \) is a strong local connection in dimension \(k \) for all \(k \), and therefore that \(M/G \) is LC\(^\infty \).

In order to prove that for every point \(x \in M/G \) and every neighborhood \(N \) of \(x \) there are (connected) open neighborhoods \(V, U \) of \(x \) such that \(V \subset U \subset N \) and for all \(k \) the image of \(\pi_k(V-x) \) in \(\pi_k(U-x) \) (under the homomorphism induced by the inclusion \(V-x \subset U-x \)) is isomorphic to \(\pi_k(S^{n-1}) \) we could duplicate the arguments of [1] using the fact that \(P|P^{-1}(W) \) is a local connection in all dimensions for every open set \(W \) of \(M/G \) wherever Smale's theorem is used. We shall omit these details.

References

University of Michigan