ON THE ZEROS OF THE BERGMAN FUNCTION IN DOUBLY-CONNECTED DOMAINS

PAUL ROSENTHAL

The purpose of this note is to show that every doubly-connected Lu Qi-Keng domain in \(C^1 \) is pseudoconformally equivalent to a disc with the center deleted. This extends a result of M. Skwarczynski [4], who gave an example of a domain \(C^1 \) which is not a Lu Qi-Keng domain. (See definition below.) Our results indicate that, at least in this particular case, there exists a connection between the degree of connectivity of \(D \) and zeros of the Bergman function. We use the notation \(z = (z^1, z^2, \cdots, z^n) \) for a point in \(D \subseteq C^n \) and \(i \) for \((\bar{p}, \bar{p}, \cdots, \bar{p})\). We denote

\[
D^* = \{ i \mid i \in D \}.
\]

Definitions and theorems relating to the Bergman function can be found in [1]. In what follows, the Bergman function of the domain \(D \subseteq C^n \) will be denoted by \(K_D(z, i) \).

Definition. A domain \(D \subseteq C^n \) is a Lu Qi-Keng domain if the equation \(K_D(z, i) = 0 \) has no solution in \(D \times D^* \) (see [4]).

Theorem 1. Let \(D \) be the ring \(0 < r < |z| < 1 \). Then \(D \) is not a Lu Qi-Keng domain.

Proof. As was shown by Zarankiewicz in [5], see also [1, p. 10],

\[
K_D(z, i) = \frac{1}{\pi i} \left[\wp \{ \log(zi); \omega, \omega' \} + \frac{\eta}{\omega} - \frac{1}{2 \omega'} \right].
\]

\(\wp \) is the Weierstrassian \(\wp \)-function, \(\omega = \pi i, \omega' = \log r, 2\eta \) is the increment of the Weierstrassian \(\zeta \)-function related to the half-period \(\omega \). (We note that since the first half-period \(\omega = \pi i \), the value of the \(\wp \)-function does not depend on the value chosen for \(\log(zi) \).) Using the Legendre equation \(\eta \omega' - \eta' \omega = \pi i/2 \) (real(\(\omega'/i\omega \)) > 0), (1) can be written as

\[
K_D(z, i) = \frac{1}{\pi i} \left[\wp(u; \omega, \omega') + \frac{\eta'}{\omega'} \right],
\]

\(u = \log(zi) \). The function \(e^u \) maps the period-parallelogram (points

Presented to the Society, April 4, 1968; received by the editors May 1, 1968.

This work was supported in part by Air Force contract AF 1047-66 and AEC contract 326-P22.
Re \(u = 0 \), log \(r^4 \) excluded) onto the \(q \)-ring \(0 < r^2 < |q| < 1 \), \(q = z \). Since the doubly periodic function \(\mathcal{Q}(u) \) attains every value in the period-parallelogram exactly twice, the function

\[
\eta'/\omega' + \mathcal{Q}(u)
\]

attains every value in the \(q \)-ring except for values attained when \(u \) is in the segment \(\text{Re} \, u = 0, 0 \leq \text{Im} \, u \leq \pi \). Consider the boundary of the rectangle with vertices \(0, \pi i, \log r + \pi i, \log r \), in the \(u \)-plane with counterclockwise orientation. On this boundary, \(\mathcal{Q} \) attains real values increasing monotonically from \(-\infty \) to \(+\infty \). The function (3) has the same property, and we conclude that the exceptional values of (3) form a closed segment \([-\infty, \eta'/\omega' + \mathcal{Q}(\pi i) \] on the real axis. We infer the Bergman function has a zero in \(D \times D^* \) if and only if

\[
\eta'/\omega' + \mathcal{Q}(\pi i) < 0.
\]

We prove next that, for every \(0 < r < 1 \), (4) holds. Consider the new pair of primitive half-periods, \(\tilde{\omega} = -\log r, \tilde{\omega}' = \pi i \). We then obtain

\[
\eta'/\omega' + \mathcal{Q}(\pi i) = \tilde{\eta}/\tilde{\omega} + \mathcal{Q}(\pi i).
\]

It is known that [2, p. 336],

\[
\frac{\tilde{\eta}}{\tilde{\omega}} + \mathcal{Q}(u) = -\pi^2 \left\{ \frac{1}{\omega^2} \left(z - \bar{z}^{-1} \right)^2 + \sum_{m=1}^{\infty} \frac{h^{2m}g^{-2}}{(1 - h^{2m}g^{-2})^2} \right\} + \sum_{m=1}^{\infty} \frac{h^{2m}g^2}{(1 - h^{2m}g^2)^2},
\]

\[
v = u/2\tilde{\omega}, \quad z = e^{v}i, \quad t = \tilde{\omega}'/\tilde{\omega}, \quad h = e^{v} (\text{Im} \, t > 0).
\]

Since the right-hand side of (6) for \(\tilde{\omega} = -\log r, \tilde{\omega}' = \pi i \), and \(u = \pi i \) is negative for all \(0 < r < 1 \), (4) holds. This completes the proof of Theorem 1.

Theorem 2. Every doubly-connected Lu Qi-Keng domain in \(C^1 \) is pseudoconformally equivalent to a disc with the center deleted.

Proof. Let \(D \) be a doubly-connected Lu Qi-Keng domain in \(C^1 \). It must be pseudoconformally equivalent to one of the three following domains:

1. a plane with the center deleted,
2. a ring \(0 < r < |z| < 1 \),
3. a disc with the center deleted.

However, the Bergman function for the domain \(\{ z | z \neq 0 \} \) is identically zero, and the Bergman function for the ring possesses zeros by
Theorem 1. Since the class of Lu Qi-Keng domains is invariant under pseudoconformal transformations, (1) and (2) do not occur.

Theorem 3. For every $k \geq 3$, there exists a domain $D \subset \mathbb{C}$ of connectivity k which is not a Lu Qi-Keng domain.

Proof. Consider a ring R and let z_0, i_0 be such that $K_R(z_0, i_0) = 0$. We choose $k - 2$ distinct points z_1, \ldots, z_{k-2} in R different from z_0 and i_0. Consider a domain $R_m = R - \bigcup_{j=1}^{k-2} \{z \in R \text{ and } |z - z_j| \leq 1/m, m \text{ a positive integer}\}$. By the Ramadanov Theorem [3], the sequence $K_{R_m}(z, i_0)$ converges locally uniformly to $K_D(z, i_0)$ where $D = \bigcup_{m=1}^{\infty} R_m$. Since $K_D(z, i_0) \equiv K_R(z, i_0)$, we conclude that for sufficiently large m, the degree of connectivity of R_m is k, and by Hurwitz’s theorem the function $K_{R_m}(z, i_0)$ has a zero in R_m.

References

Stanford University