FINDING A BOUNDARY FOR A 3-MANIFOLD

L. S. HUSCH

In [1] Browder, Levine and Livesay considered the following problem: "Given an open manifold \(M \), when is it the interior of a compact manifold with boundary?" They were able to show that if dimension of \(M \geq 6 \) and if \(M \) was 1-connected at infinity, then a necessary and sufficient condition was that the homology of \(M \) be finitely generated. Edwards [4] and Wall [10] showed that if dimension of \(M \) was 3 and if \(M \) was 1-connected at infinity then \(M \) was homeomorphic to the interior of a compact manifold. Siebenmann [9] obtained necessary and sufficient conditions when dimension of \(M \geq 6 \). In this note, we prove the following.

Theorem. Let \(M \) be a connected, orientable 3-manifold with compact boundary and one end. The interior of \(M \) is homeomorphic to the interior of a compact 3-manifold if and only if there exists a positive integer \(N \) such that every compact subset of \(M \) is contained in the interior of a compact 3-manifold \(M' \) with connected boundary such that

1. \(\pi_1(M-M') \) is finitely generated;
2. genus (bdry \(M' \)) \(\leq N \);
3. every contractible 2-sphere in \(M-M' \) bounds a 3-cell.

Remarks. The referee has pointed out to the author that the boundary is unique by [12].

If the Poincaré Conjecture is true, hypothesis 3 is unnecessary. However if there is a counterexample to the Poincaré Conjecture it is possible to construct a counterexample to the theorem if 3 is not assumed. Whitehead's example [11] shows that 2 and 3 are not sufficient. It is unknown to the author whether 1 and 3 are sufficient. There is no loss of generality to assume that we are working in the piecewise linear category.

By van Kampen's Theorem [3, p. 71], it follows that \(\pi_1(M) \) is finitely generated. Hence it follows that \(M=\bigcup_{i=1}^{\infty} M_i \) such that for all \(i=1, 2, \ldots \)

1. \(M_i \) is a compact 3-manifold with connected boundary such that every contractible 2-sphere in \(M-M_i \) bounds a 3-cell;
2. \(M_i \subseteq \text{int} \ M_{i+1} \) (\(= \text{interior} \ M_{i+1} \));
3. \(\pi_1(M-M_i) \) is finitely generated;

Presented to the Society, August 29, 1967; received by the editors June 26, 1967.

1 Research supported in part by National Science Foundation Grants GP-5438 and GP-6613.
4. \(H_k(M, M_i) = 0 \) for \(k = 0, 1 \);

5. genus (bdry \(M_i \)) = \(n \) where \(n \) is an integer such that if \(M = \bigcup_{i=1}^{n} M_i \) where \(M_i \) satisfy 1–4, then genus \(M_i \geq n \) for all \(i \).

For all \(i \), let \(N_i = M_{i+1} - \text{int} M_i \). We have two cases to consider. If \(n = 0 \), it follows from \([6]\) that if \(\pi_1(N_i) \) is trivial, then \(N_i \) is homeomorphic to the product of the 2-sphere with the interval. Hence if all but a finite number of \(N_i \)'s have trivial fundamental group, we are through. If not, it follows from van Kampen's Theorem and \([5, \text{p. 192}]\) that \(\pi_1(M - M_i) \) is not finitely generated.

Let us now suppose that \(n \geq 1 \). We make the following claim.

6. The natural map \(\pi_i(\text{bdry } M_i) \to \pi_i(\bigcup_{i=1}^{n} N_k) \) is a monomorphism for all but a finite number of \(i \)'s.

Suppose that \(\pi_i(\text{bdry } M_i) \to \pi_i(\bigcup_{i=1}^{n} N_k) \) is not a monomorphism. By the Loop Theorem \([7]\), there exists a simple loop \(S \) on \(\text{bdry } M_i \) which is homotopically nontrivial on \(\text{bdry } M_i \) but \(S \) is contractible in \(\bigcup_{i=1}^{n} N_k \). It follows from Dehn's Lemma \([8]\) that \(S = \text{bdry } D \) where \(D \) is a 2-cell such that \(D \cap \text{bdry } M_i = S \). Let \(N \) be a regular neighborhood of \(D \) in \(\bigcup_{i=1}^{n} N_k \) which meets \(\text{bdry } M_i \) in a regular neighborhood of \(S \). Let \(M_i' = M_i \cup N \).

We have two possibilities. If \(S \) does not separate \(\text{bdry } M_i \), then \(M_i \) is a compact 3-manifold with connected boundary of genus \((n - 1)\). Suppose \(S \) separates \(\text{bdry } M_i \). Since \(H_k(M, M_i) = 0 \), \(k = 0, 1 \), then \(H_k(M, M_i') = 0 \), \(k = 0, 1 \). Hence \(H_0(\text{bdry } M_i') = 0 \), \(k = 0, 1 \). Therefore \(\pi_1(\text{bdry } M_i') = \pi_1(M_i') \) and \(M_i' \) has two components, one of which is bounded, say \(B \). Let \(M_i'' = M_i' \cup B \). Then \(M_i'' \) is a compact 3-manifold with connected boundary of genus \(< n \).

If \(\pi_i(\text{bdry } M_i) \to \pi_i(\bigcup_{i=1}^{n} N_k) \) is not a monomorphism for infinitely many \(i \)'s then \(M = \bigcup_{i=1}^{n} M_i \) where genus (bdry \(M_i \)) \(< n \) contradicting 5. Hence by reindexing we may assume

6'. For \(i = 1, 2, \cdots \), the natural map \(\pi_i(\text{bdry } M_i) \to \pi_i(\bigcup_{i=1}^{n} N_k) \) is a monomorphism.

7. There are only finitely many \(i \)'s such that there exists a surface \(S \) in \(N_i \) which separates \(\text{bdry } M_i \) from \(\text{bdry } M_{i+1} \) and which has genus \(< n \).

This claim follows from 5. Hence we have by reindexing

7'. If \(S \) is a surface in \(N_i, i = 1, 2, \cdots \), which separates \(\text{bdry } M_i \) from \(\text{bdry } M_{i+1} \), then genus \(S \geq n \).

8. For \(i = 2, 3, \cdots \), the natural map \(\pi_i(\text{bdry } M_i) \to \pi_i(\bigcup_{i=1}^{n} N_k) \) is a monomorphism.

The proof of 8 is by induction on \(i \). Suppose \(i = 2 \) and \(\pi_1(\text{bdry } M_2) \to \pi_1(N_1) \) is not one-one. Then as in the proof of 6, there exists a 2-cell \(D \) in \(N_1 \) such that \(D \cap \text{bdry } M_2 = \text{bdry } D \) is a nontrivial loop on \(M_2 \).
Again we have two cases to consider depending upon whether bdry D separates bdry M_2.

If bdry D does not separate bdry M_2, then we can easily find a surface in the interior of N_1 separating bdry M_1 from bdry M_2 of genus $<n$. This contradicts $7'$. Now consider the case when bdry D separates bdry M_2.

Let \overline{N} be a regular neighborhood of D in Ω_1 such that $\overline{N} \cap$ bdry M_2 is a regular neighborhood of bdry D in bdry M_2. Let $M'_2 = M_2 - \text{int}(\overline{N} \cup N_2)$. Since M_1 can be chosen to contain the carriers of elements of $H_1(M)$, we have the following exact sequence

$$0 \to H_1(M, M'_2) \to H_0(M'_2) \to H_0(M) = 0.$$

But

$$H_1(M, M'_2) = H_1(M - \text{int} M'_2, \text{bdry} M'_2).$$

Again,

$$H_1(bdry M'_2) \to H_1(M - \text{int} M'_2) \to H_1(M - \text{int} M'_2, \text{bdry} M'_2) \to H_0(bdry M'_2) \to H_0(M - \text{int} M'_2) = 0.$$

bdry D separates bdry M_2 implies that $H_0(bdry M'_2) = \mathbb{Z}$ (= integers). Since $H_1(M - \text{int} M'_2, \text{bdry} M'_2)$ maps onto \mathbb{Z} and is free Abelian (for it is isomorphic to $H_0(M'_2)$), $H_1(M - \text{int} M'_2, \text{bdry} M'_2)$ has rank greater than zero. Hence $H_0(M'_2)$ has rank greater than zero and thereby the number of components of M'_2 is greater than one. The boundary components of M'_2 are A_1 and A_2 where $A_i \cap \text{bdry} M_2 \neq \emptyset$; in fact $A_1 \cap \text{bdry} M_2$ is separated from $A_2 \cap \text{bdry} M_2$ by bdry D.

Since N_1 is a connected compact manifold, it follows that the component R_1 of M'_2 which contains bdry M_1 also contains one of the A_i's, say A_1. By using the collar of A_1 in R, one can find a homeomorphic copy of A_1, say \overline{A}_1, such that \overline{A}_1 separates bdry M_1 from A_1. Since N_1 is connected, there is only one other component of M'_2, say R_2, and bdry $R_2 = A_2$. Thus \overline{A}_1 separates bdry M_1 from bdry M_2 and genus $\overline{A}_1 < n$. This contradicts $7'$. Hence $\pi_1(bdry M_2) \to \pi_1(N_1)$ is a monomorphism.

The induction argument is essentially the same as the case $i = 2$, except that the disk D may not lie in N_i; i.e., D may intersect $R = \bigcup_{k=1}^{\infty} \text{bdry} M_k$. If so, put D into general position with respect to R, keeping bdry D fixed. Then $D \cap R$ is a finite collection of simple closed curves $\{S_i\}_{i=1}^n$. Pick an innermost S_i on D; suppose S_i bounds D_j on D and $S_i \subseteq \text{bdry} M_k$. Then D_j lies either in N_k or N_{k-1}. By either the induction hypothesis or $6'$, S_i bounds a disk D'_j on bdry M_k. Replace D by $D' = (D - D_j) \cup D'_j$. By using the collar of bdry M_k we may
"pop" D_j off bdry M_k, eliminating the singularity S_j without introducing any new singularities. After a finite number of these steps we finally get a disk $D'' \subseteq N_i$ such that $D'' \cap $bdry$ N_i =$bdry D. We continue then as in the case $i=2$ to get a contradiction.

9. If for $i=2, 3, \ldots$, the natural maps $\pi_1($bdry$ M_i) \rightarrow \pi_1(N_i)$ are epimorphisms, then the theorem is true.

This claim follows from the following fact. If $\pi_1($bdry$ M_i) \rightarrow \pi_1(N_i)$ is an epimorphism, then by [2], N_i is homeomorphic to ($\text{bdry} M_i \times [0, 1]$. We are left to consider the possibility that for infinitely many i's, $\pi_1($bdry$ M_i) \rightarrow \pi_1(N_i)$ is not onto. There is no loss of generality to assume that this occurs for all $i=2, 3, \ldots$. By van Kampen's theorem,

$$\pi_1\left(\bigcup_{i=1}^{k+1} N_i, p_{k+1} \right) = \pi_1\left(\bigcup_{i=1}^{k} N_i, p_{k+1} \right) \ast_{G_{k+1}} \pi_1(N_{k+1}, p_{k+1})$$

i.e., if p_{k+1} is a point in bdry M_{k+1}, then the fundamental group of $\bigcup_{i=1}^{k+1} N_i$ is the free product of the fundamental groups of $\bigcup_{i=1}^{k} N_i$ and N_{k+1} with amalgamated subgroup $G_{k+1} = \pi_1($bdry$ M_{k+1}, p_{k+1})$. It follows from 6' and 8 that the "natural map"

$$\phi: \pi_1\left(\bigcup_{i=1}^{k} N_i, p_{k+1} \right) \rightarrow \pi_1\left(\bigcup_{i=1}^{k+1} N_i, p_{k+1} \right)$$

is a monomorphism. Since $\pi_1($bdry$ M_{k+1}, p_{k+1}) \rightarrow \pi_1(N_{k+1}, p_{k+1})$ is not onto, ϕ is not onto. Hence we may assume that $\pi_1(\bigcup_{i=1}^{k} N_i, p_1)$ is identified with a proper subgroup of $\pi_1(\bigcup_{i=1}^{k+1} N_i, p_1)$ with "identifying map" ϕ_1. Then $\pi_1(\bigcup_{i=1}^{k} N_i)$ is the direct limit of $\{ \pi_1(\bigcup_{i=1}^{k} N_i, p_1) \}$ and hence can be written as the infinite monotone union of proper subgroups which implies that $\pi_1(\bigcup_{i=1}^{k} N_i) = \pi_1(M-M)$ is infinitely generated. This contradiction establishes the theorem.

REFERENCES

Florida State University and
University of Georgia