WATTS COHOMOLOGY OF FIELD EXTENSIONS

NEWCOMB GREENLEAF

Let \(R \) be a commutative ring and \(A \) a commutative \(R \)-algebra. In [4] Watts defined a cohomology theory, \(H^*_R(A) \), which yields the Čech cohomology of the compact Hausdorff space \(X \) in the case when \(R = R \) and \(A = C(X) \), the ring of continuous real valued functions on \(X \). The definition of \(H^*_R(A) \) was in terms of a specific complex derived from the “additive Amitsur complex.” The question of the possible functorial significance of this cohomology theory was raised. As a step in this direction we compute here the Watts cohomology \(H^*_K(L) \), where \(K \) is a field and \(L \) is an arbitrary extension field of \(K \).

We recall the definition of \(H^*_K(L) \). The complex \(F^*_K(L) \) is the additive Amitsur complex [3] with a dimension shift of 1: \(F^*_K(L) \) is the \(n+1 \)-fold tensor product of \(L \) over \(K \), and the coboundary map
\[
d^* : F^*_K(L) \to F^*_{K+1}(L)
\]

\[
d^*(x_0 \otimes \cdots \otimes x_n) = \sum_{i=0}^{n+1} (-1)^i x_0 \otimes \cdots \otimes x_{i-1} \otimes 1 \otimes x_i \otimes \cdots \otimes x_n.
\]

The homology of this complex is easily found.

Proposition 1. The complex \(F^*_K(L) \) has zero homology except in dimension zero, where \(H^0(F^*_K(L)) \cong K \).

Proof. It is known [3, Lemma 4.1] that the complex \(0 \to K \to F^0_K(L) \to F^1_K(L) \cdots \) is acyclic.

Let \(\mu : F^*_K(L) \to L \) by \(\mu(x_0 \otimes \cdots \otimes x_n) = x_0 \cdots x_n \). The subcomplex \(N^*_K(L) \) is given by
\[
N^*_K(L) = \{ x \in F^*_K(L) \mid \exists y \in F^*_K(L) \text{ with } \mu_n(y) \neq 0 \text{ and } xy = 0 \}
\]
(the definition is simplified here by the fact that \(L \) is a field). Note that \(N^*_K(L) \subseteq \ker \mu \). The Watts cohomology \(H^*_K(L) \) is then defined to be the homology of the quotient complex \(C^*_K(L) = F^*_K(L)/N^*_K(L) \). Let \(\pi_n : F^*_K(L) \to C^*_K(L) \) denote the standard map.

Let \(L_s \) be the separable closure of \(K \) in \(L \). We shall prove the following

Theorem. The complexes \(C^*_K(L) \) and \(F^*_L(L_s) \) are canonically isomorphic.

1 This research was partially supported by National Science Foundation Grant GP-7436.
The following corollary is then immediate by Proposition 1.

Corollary. Watts cohomology for field extensions is given by $H^0_K(L) \cong L$, and $H^n_K(L) = 0$ for $n > 0$.

We now establish the theorem.

Proposition 2. Let L be separable algebraic over K, and let $x \in F^n_K(L)$ with $\mu_n(x) = 0$. Then there is a $y \in F^n_K(L)$ with $\mu_n(y) \neq 0$ and $xy = 0$.

Proof. It suffices to consider the case where L is a finite extension of K. But then $F^n_K(L)$ is a semisimple ring and every ideal is a direct factor. Hence $F^n_K(L) \cong L' \times \ker(\mu_n)$, where L' is a field and μ_n maps L' isomorphically onto L.

Corollary. If L is separable algebraic over K, $N^n_K(L) = \ker(\mu_n)$, and there is a canonical isomorphism $\beta_n : C^n_K \to L$ such that $\beta_n \circ \tau_n = \mu_n$.

Proposition 3. Let K be separably closed in L (i.e. $L = K$) and let A be a commutative K-algebra in which every zero divisor is nilpotent. Then every zero divisor in $A \otimes_K L$ is nilpotent.

Proof. We may work within a finitely generated subalgebra of A, and hence assume A is Noetherian. Let N be the ideal of nilpotents in A. Then (0) is a primary ideal in A and N is its associated prime. It then follows [1, Chapter IV, §2.6, Theorem 2] (with $E = A$, $F = B = A \otimes_K L$) that the associated prime ideals of (0) in $A \otimes_K L$ coincide with the associated prime ideals of the ideal $N \otimes_K L$ in $A \otimes_K L$. But by [2, Chapter IV, Theorem 24] every zero-divisor in $A/N \otimes_K L$ is nilpotent and hence $N \otimes_K L$ is a primary ideal.

Corollary. If K is separably closed in L, then every zero divisor in $F^n_K(L)$ is nilpotent, for all n, and $F^n_K(L) = C^n_K(L)$.

Now let $\theta_n : F^n_K(L) \to F^n_{L^\alpha}(L)$ by $\theta_n(x_0 \otimes \cdots \otimes x_n) = x_0 \otimes \cdots \otimes x_n$. It is clear that θ_n is surjective and that $\theta = \{\theta_n\}$ is a map of complexes, $\theta : F^n_K(L) \to F^n_{L^\alpha}(L)$. Let $x \in N^n_K(L)$, with y satisfying $xy = 0$, $\mu_n(y) \neq 0$. Then $\theta_n(x) \theta_n(y) = 0$ and $\mu_n(\theta_n(x)) = \mu_n(y) \neq 0$, so $\theta_n(x) \in N^n_{L^\alpha}(L) = (0)$. Hence θ induces a surjective map of complexes $\tau : C^n_K(L) \to C^n_{L^\alpha}(L) = F^n_{L^\alpha}(L)$. To complete the proof of the theorem we will construct an inverse to τ.

Fix an integer n, and let A denote the ring $F^n_K(L)$. Let B be the subring $F^n_K(L)$. If M is an A-module and $\rho : A \to M$ an A-linear map, then $\ker(\rho) \supset A(\ker(\rho) \mid \rho)$ and hence ρ factors as $A = A \otimes_B B \to A \otimes_B \rho(B) \to M$. We apply this method to the two maps $\theta_n : A \to F^n_{L^\alpha}(L)$, and $\pi_n : A \to C^n_K(L)$.

Proposition 4. The induced map $A \otimes_B \theta_n(B) = F^n_n(L) \otimes F^n_n(L) \rightarrow F^n_n(L)$ is an isomorphism.

Proof. First note that $\theta_n(B)$ is canonically isomorphic to L_n. We construct an inverse. Let $\omega: L \times \cdots \times L \rightarrow A \otimes_B \theta_n(B)$ by $\omega(x_0, \cdots, x_n) = x_0 \otimes \cdots \otimes x_n \otimes 1$. If $y \in L_n$, $x_0 \otimes \cdots \otimes y_{x_i} \otimes \cdots \otimes x_n \otimes 1 = x_0 \otimes \cdots \otimes x_i \otimes \cdots \otimes x_n \otimes y$. Hence ω is L_n-multilinear and induces $F^n_n(L) \rightarrow A \otimes_B \theta_n(B)$.

Consider the following diagram:

\[\begin{array}{ccc}
A = A \otimes_B B & \rightarrow & A \otimes_B \theta_n(B) \rightarrow F^n_n(L) \\
\downarrow & & \downarrow \\
A \otimes_B C^n_n(L) & \rightarrow & C^n_n(L) \\
\downarrow & & \\
C^n_n(L) & & \\
\end{array} \]

Using Propositions 3 and 4, $\theta_n(B) \cong L_n \cong C^n_n(L)$ and hence we obtain, by Proposition 4,

\[F^n_n(L) \rightarrow A \otimes_B \theta_n(B) \rightarrow A \otimes_B C^n_n(L) \rightarrow C^n_n(L), \]

and the composite map is easily seen to be inverse to τ_n.

The author would like to thank the referee for supplying an elegant alternative to a clumsy induction.

References

University of Rochester