EXTENDING ULM’S THEOREM WITHOUT
GROUP THEORY

FRED RICHMAN AND ELBERT WALKER

1. Introduction. In 1933 Ulm [6] showed that a countable reduced
abelian \(p \)-group \(G \) was determined by a function \(F_\alpha \) from ordinals
to cardinals defined by \(F_\alpha = \dim p^\alpha G/p^{\alpha+1}G \), the Ulm
invariants of \(G \). In 1960 Kolettis [3] extended this result to direct
sums of such groups. Hill [1] has recently improved Kolettis’ work
by showing that if \(G_i \) and \(H_i \) are countable reduced abelian \(p \)-groups
such that \(G = \sum_{i \in I} G_i \) and \(H = \sum_{i \in I} H_i \) have the same Ulm invariants
then there exists a partition of \(I \) into countable subsets \(I_a \) such
that \(\sum_{i \in I_a} G_i \) and \(\sum_{i \in I_a} H_i \) have the same Ulm invariants. Ulm’s
theorem then implies that \(G \) and \(H \) are isomorphic.

Hill’s work uses the fact that if \(G \) is a direct sum of countable
reduced \(p \)-groups then the socle of \(G \) is decomposable, i.e. \(G[p] = \sum_{\lambda < \lambda(\Omega)} K_\lambda \) where every nonzero element of \(K_\lambda \) has height
precisely \(\lambda \) in \(G \). This is a nontrivial group theoretic property, whereas
one would suspect that Hill’s theorem holds on purely set theoretic
grounds.

There is more than esthetics involved in eliminating the require-
ment of the decomposability of \(G[p] \). Let \(C \) be the class of totally
projective \(p \)-groups [4] of length less than \(\Omega \omega \) where \(\Omega \) and \(\omega \) are,
respectively, the first uncountable and the first infinite ordinals.
Parker and Walker [5] have shown that two groups in \(C \) are iso-
morphic if and only if they have the same Ulm invariants. This gen-
eralizes Kolettis’ theorem since \(C \) contains the class of direct sums
of countable reduced \(p \)-groups [4]. In proving this generalization
the following situation arises: \(G = \sum_{i \in I} G_i \) and \(H = \sum_{i \in I} H_i \) have
the same Ulm invariants, \(G_i \) and \(H_i \) are totally projective with \(|G_i|, |H_i| \leq \aleph_1 \), and it is necessary to partition \(I \) into subsets \(I_a \) such that
\(|I_a| \leq \aleph_1 \) and \(\sum_{i \in I_a} G_i \) and \(\sum_{i \in I_a} H_i \) have the same Ulm invariants.
Hill’s procedure cannot be followed because the socles of \(G \) and \(H \)
need not be decomposable. In fact [2], if \(G[p] \) is decomposable
then \(pG = \{0\} \). Again, such a partition of \(I \), if it exists, should exist
on purely set theoretic grounds. This is indeed the case and our pur-
pose here is to establish the relevant set theoretic facts which im-
mediately yield both this and the theorem of Hill.

Received by the editors May 22, 1967.

1 Work on this paper was partially supported by NSF-GP-6564.
2. **The theorem.** We separate part of the construction into a lemma.

Lemma. Let \(m \) be an infinite cardinal number. Let \(f \) be a function from the set \(X \) to the cardinal numbers. Suppose

\[
\sum_{x \in X} f(x) = \sum_{x \in X} g(x) \quad \text{for all } x \in X
\]

where \(\sum_{x \in X} f(x) \leq m \leq \sum_{x \in X} g(x) \) for all \(\lambda \in I \), and \(m < |I| \). If \(S \subseteq I \), \(|S| < |I| \), then there exists a set \(S \supseteq S \) such that

\[
\sum_{\lambda \in S} f(x) = \sum_{\lambda \in S} g(x), \quad \sum_{x \in S} f(x) = \sum_{x \in S} g(x)
\]

and

Case 1. \(|I| \) is not the sum of \(\aleph_0 \) smaller cardinals: \(|S| < |I| \) and if for some \(x \in X \), \(f(x) < |I| \), \(\sum_{x \in X} f(x) \neq 0 \) and \(f(x) \) or \(g(x) \neq 0 \), then \(\lambda \in S \).

Case 2. \(|I| \) is a sum of \(\aleph_0 \) smaller cardinals: \(|S| \leq m |S| \).

Proof. Construct \(S = S_1 \cup T_1 \cup U_1 \cup S_2 \cup T_2 \cup \cdots \) so that

(a) \(\sum_{x \in S} f(x) \geq \sum_{x \in T} g(x) \geq \sum_{x \in S} f(x) \).

(b) Case 1: \(|S_1| < |I| \), Case 2: \(|S_1| \leq m |S| \).

(c) \(S_{i+1} = U_j \cup \lambda \) \(\forall x \in X \), \(\sum_{x \in U_j} f(x) \neq 0 \) and \(f(x) \) or \(g(x) \neq 0 \) and, Case 1: \(f(x) < |I| \), Case 2: \(f(x) \leq m |S| \).

Let \(S = S_j \). Since \(S = S_j \cup T_j = U U_j \) it follows from (a) that

\[
\sum_{x \in S} f(x) \geq \sum_{x \in S} g(x).
\]

In Case 1, since \(|S_1| < |I| \), then \(|S| < |I| \); in Case 2, since \(|S_1| \leq m |S| \) we have \(|S| \leq m |S| \). Suppose

\[
\sum_{x \in S \setminus S} f(x) \neq \sum_{x \in S \setminus S} g(x)
\]

for some \(x \in X \). Since \(f(x) = \sum_{x \in S} f(x) + \sum_{x \in S \setminus S} f(x) = \sum_{x \in S} g(x) + \sum_{x \in S \setminus S} g(x) \) and \(\sum_{x \in S \setminus S} f(x) = \sum_{x \in S \setminus S} g(x) \) is, in Case 1, less than \(|I| \) and, in Case 2, less than or equal to \(m |S| \), we must have, in Case 1, that \(f(x) < |I| \) and, in Case 2, that \(f(x) \leq m |S| \). Hence by (c) every \(\lambda \) such that \(f(x) \) or \(g(x) \neq 0 \) must be in \(S \). But this implies that \(\sum_{x \in S \setminus S} f(x) = \sum_{x \in S \setminus S} g(x) = 0 \). The second condition in Case 1 follows immediately from (c).

Theorem. Let \(m \) be an infinite cardinal number. Let \(f \) be a function from the set \(X \) to the cardinal numbers such that

\[
f(x) = \sum_{x \in I} f(x) = \sum_{x \in I} g(x) \quad \text{for all } x \in X,
\]

where \(\sum_{x \in X} f(x) \leq m \leq \sum_{x \in X} g(x) \) for all \(\lambda \in I \). Then there exists a partition of \(I \) into subsets \(S_\alpha \) of cardinality \(\leq m \) such that

\[
\sum_{x \in S_\alpha} f(x) = \sum_{x \in S_\alpha} g(x).
\]

Proof. We show that if \(|I| > m \) then such a partition can be found.
where $|S_a| < |I|$. By induction we will have proved the theorem.

Initially well order $I = \{i_\alpha\}$, $\alpha < |I|$.

Case 1. Define sets $S_\alpha \subseteq I$ for ordinals $\alpha < |I|$ as follows: Let

$$S_\alpha = \{i_\beta \in \bigcup_{i_\gamma} S_i \mid \beta = \alpha \text{ or } \exists \gamma > \beta, i_\gamma \in \bigcup_{i_\delta < \alpha} S_{i_\delta}\}$$

where the "bar" is taken inside $I \setminus \bigcup_{i_\alpha < \alpha} S_i$. Observe that $|S_\alpha| < |I|$ and $|\bigcup_{i_\alpha < \alpha} S_i| = |I|$ only if $\bigcup_{i_\alpha < \alpha} S_i = I$. Also,

$$\sum_{\lambda \in I \setminus \bigcup_{i_\alpha < I} S_i} f_\lambda(x) = \sum_{\lambda \in I \setminus \bigcup_{i_\alpha < I} S_i} g_\lambda(x),$$

for otherwise $f(x) < |I|$ and hence $f_\lambda(x) = g_\lambda(x) = 0$ for all $\lambda \in I \setminus \bigcup_{i_\alpha < I} S_i$ or for all $\lambda \in \bigcup_{i_\alpha < I} S_i$. Thus the construction makes sense and gives the desired partition.

In Case 2, let $\alpha_1 < \alpha_2 < \alpha_3 < \cdots$ be a sequence of ordinals with limit $|I|$. Define

$$S_j = \{i_\beta \in \bigcup_{i_\gamma} S_i \mid \beta < \alpha_j\}$$

where the "bar" is taken inside $I \setminus \bigcup_{i_\gamma < I} S_i$. The S_j give the desired partition.

Corollary (Hill). If $G = \sum_{\lambda \in I} A_\lambda$ and $H = \sum_{\lambda \in I} B_\lambda$ are reduced p-groups with the same Ulm invariants, $|A_\lambda| \equiv \aleph_0 \equiv |B_\lambda|$, then there is a partition of the set I into countable sets S_α such that

$$\sum_{\lambda \in S_\alpha} A_\lambda \cong \sum_{\lambda \in S_\alpha} B_\lambda.$$

Proof. Apply the theorem to the Ulm invariants of G and use Ulm's theorem.

Bibliography

New Mexico State University