Let L be the lattice of all ideals of a ring with unity and let X be a subset of the set of all real ideals of A [1] which is equipped with the Stone topology [4, p. 272]. Anderson [1, Lemma 4, 5(2)] gave necessary and sufficient conditions, in terms of certain elements of L, for two subsets of X to be completely separated in X. In [6, §8], we modified the idea of Anderson in case L is the lattice of all S_α-ideals of a C-lattice [2, §§2 and 3] for α a real number and X a certain subset of L equipped with the Stone topology. The purpose of this note is to give necessary and sufficient conditions for two subsets of X to be completely separated in X in case L is an arbitrary complete lattice and X is a subset of L which is completely regular when equipped with the Stone topology. The idea is essentially that of Anderson in [1]. We use this result to complete the “internal” characterization of the Φ-algebra of all real-valued continuous functions on an arbitrary completely regular space for which Henriksen and Johnson [6] have results in special cases.

Suppose now that L is a complete lattice and X is a fixed subset of L. We define a function ϕ from L into L by

\[\phi(x) = \bigwedge \{ y \in X \mid x \leq y \} \quad (x \in L) \]

and we let $K = \{ x \in L \mid x = \phi(x) \}$. It is clear that $\phi(x)$ is merely the meet of the intersection of X with the principal dual ideal of L generated by x. It is also a routine matter to verify that ϕ is a closure operation [3, p. 49] on L and hence by [8, Theorem 4.1], K is a complete lattice relative to the partial order on L. Moreover, meets in K coincide with meets in L and joins in K are obtained by operating on the joins in L by ϕ. In addition, $X \subseteq K$, $\Lambda X = \Lambda K$, and if $1 = \bigvee L$, then $1 \in K$.

We now suppose that X is also equipped with the Stone topology. Using the fact that the closure of a subset Y of X is $\{ y \in X \mid \Lambda Y \leq y \}$, one can show that the mapping $F \rightarrow \Lambda F$ is a dual isomorphism of the lattice of all closed subsets of X onto K.

Next, we define a binary relation $*$ on K as follows: $x * y$ in case
there exists $z \in K$ such that $z \wedge x = \wedge X$ and $z \vee y = 1$. The motivation for this definition is the following: If F_1 and F_2 are closed subsets of X, then $F_2 \cap F_1$ if and only if $\wedge F_1 \ast \wedge F_2$. Note that this implies that \ast is a transitive relation on K.

If $C \subseteq K$, we say that C is a dense chain with respect to \ast in Case (i) for each $x, y \in C$, either $x \ast y$ or $y \ast x$, and (ii) if $x, y \in C$ with $x \ast y$, then there exists $z \in C$ such that $x \ast z \ast y$. We now define a binary relation \perp on K by $x \perp y$ in case there exists a countable subset C of K such that C is a dense chain with respect to \ast, $x \leq \wedge C$, and $\forall C \leq y$.

Theorem 1. Let X be a subset of a complete lattice L so that X is a completely regular space when equipped with the Stone topology. Subsets A_1 and A_2 of X are completely separated in X if and only if there exist closed subsets F_1 and F_2 of X such that $A_1 \subseteq X \setminus F_1$, $A_2 \subseteq F_2$, and $\wedge F_1 \perp \wedge F_2$.

Proof. Let Q denote the rational numbers. It is not difficult to show that subsets A_1 and A_2 of a completely regular space X are completely separated in X if and only if there exist closed sets P_i and P_2 of X and a family $(U_t)_{t \in Q}$ of open sets of X such that $A_1 \subseteq X \setminus F_1 \subseteq \bigcap_{t \in Q} U_t$, $\bigcup_{t \in Q} U_t \subseteq X \setminus F_2 \subseteq X \setminus A_2$, and $r < s$ in Q implies that $\text{cl } U_r \subseteq U_s$.

Suppose first that A_1 and A_2 are completely separated in X, and let F_1, F_2, and $(U_t)_{t \in Q}$ be as described above. For each $t \in Q$, let $F_t = X \setminus U_t$. One can show that $\{\wedge F_t \mid t \in Q\}$ is a countable dense chain with respect to \ast such that $\wedge F_1 \leq \wedge \{\wedge F_t \mid t \in Q\}$ and $\forall \{\wedge F_t \mid t \in Q\} \leq \wedge F_2$.

Conversely, if there exist closed sets F_1 and F_2 of X such that $A_1 \subseteq X \setminus F_1$, $A_2 \subseteq F_2$, and $\wedge F_1 \perp \wedge F_2$, then there exists a countable subset C of K such that C is a dense chain with respect to \ast, $\wedge F_1 \leq \wedge C$, and $\forall C \leq \wedge F_2$. The conditions on C imply that there exists a function $f : Q \to C$ such that $r < s$ in Q implies that $f(r) \ast f(s)$. For each $t \in Q$, let U_t be the open subset of X defined by $\wedge (X \setminus U_t) = f(t)$. It is a routine matter to verify that $(U_t)_{t \in Q}$ is a family of open sets satisfying $X \setminus F_1 \subseteq \bigcap_{t \in Q} U_t \subseteq X \setminus F_2$, and $r < s$ in Q implies that $\text{cl } U_r \subseteq U_s$. Hence the theorem.

Suppose now that A is a Φ-algebra. We refer the reader to [5] for definitions, symbols, and notation not defined here. Let L be the complete lattice of all l-ideals of A, let $\mathfrak{a}(A)$ be the set of all real maximal l-ideals of A equipped with the Stone topology, and let $K(A)$ be the subset of L as defined earlier using the operator ϕ and the subset $\mathfrak{a}(A)$ of L. It follows that $I \in K(A)$ if and only if
I = \bigcap \{ M \in \mathfrak{a}(A) \mid I \subseteq M \}. If \bigcap \mathfrak{a}(A) = \{ 0 \}, the binary relation * can be restated slightly as follows: \(I_1 * I_2 \) in case there exists \(J \in K \) with \(I_1 \cap J = \{ 0 \} \) and \(I_1 \cup J \subseteq M \) for any \(M \in \mathfrak{a}(A) \).

We can now obtain an "internal" characterization as a \(\Phi \)-algebra of the set \(C(X) \) of all real-valued continuous functions on an arbitrary completely regular space \(X \).

Theorem 2 (Compare [5, 5.2]). A \(\Phi \)-algebra \(A \) is isomorphic to \(C(X) \) for some completely regular space \(X \) if and only if

(i) \(A \) is an algebra of real-valued functions,

(ii) \(A \) is uniformly closed,

(iii) \(A \) is closed under inversion, and

(iv) for each pair \(I \perp J \) in \(K(A) \), there exists \(f \in A \) such that \(f - 1 \in J \) and \(f \wedge |h| = 0 \) for all \(h \in I \).

Proof. The only condition which needs comment concerning the necessity of the conditions is (iv). It follows easily from 4.6 in [5] and the fact that \(I \perp J \) in \(K(A) \) if and only if the corresponding sets in \(\mathfrak{a}(A) \) are completely separated.

In view of the proof of 5.2 in [5], the sufficiency of the four conditions will be immediate if it is shown that disjoint zero-sets in \(\mathfrak{a}(A) \) have disjoint closures in \(\mathfrak{m}(A) \), where \(\mathfrak{m}(A) \) is the space of all maximal \(l \)-ideals of \(A \). Let \(Z_1 \) and \(Z_2 \) be disjoint zero-sets in \(\mathfrak{a}(A) \). Then there exist closed subsets \(F_1 \) and \(F_2 \) in \(\mathfrak{a}(A) \) such that \(Z_1 \subseteq \mathfrak{a}(A) \setminus F_1 \), \(Z_2 \subseteq F_2 \), and \(\cap F_1 \perp \cap F_2 \). By (iv), there exists \(f \in A \) such that \(f - 1 \in \cap F_2 \) and \(f \wedge |h| = 0 \) for all \(h \in F_1 \). Thus, if \(M \in Z_1 \), then \(M \subseteq F_1 \) and so \(\cap F_1 \subseteq M \). Hence there exists \(h \in \cap F_1 \) such that \(h \in M \). Since \(M \) is an \(l \)-ideal, \(|h| \in \mathfrak{m}(A) \). By [7, 1, 3.15 (iii)], \(f \wedge |h| = 0 \) implies that \(f |h| = 0 \) and so \(f |h| \subseteq M \). By the primeness of \(M \), \(f \in M \) and thus \(\tilde{f}(M) = 0 \).

It is easy to see that if \(M \in Z_2 \), then \(\tilde{f}(M) = 1 \). Moreover, we may assume that \(0 \leq \tilde{f}(M) \leq 1 \) for all \(M \in \mathfrak{a}(A) \) since \((f / 0) \perp 1 \in A \). Thus \(\tilde{f}(M) \in R \) for all \(M \in \mathfrak{m}(A) \) and so \(\{ M \in \mathfrak{m}(A) \mid \tilde{f}(M) = 0 \} \) and \(\{ M \in \mathfrak{m}(A) \mid \tilde{f}(M) = 1 \} \) are disjoint closed sets in \(\mathfrak{m}(A) \) containing \(Z_1 \) and \(Z_2 \), respectively.

References

University of Florida and Mathematisch Centrum, Amsterdam