A PROBLEM OF BOSÁK CONCERNING THE GRAPHS OF SEMIGROUPS

Y.-F. LIN

Let S be a semigroup, \mathcal{S} the set of all proper subsemigroups of S. By the graph $G(\mathcal{S})$ of S, we mean the nondirected graph whose set of vertices is \mathcal{S}, in which vertices A and B are adjacent (that is, are joined by an edge) if and only if $A \neq B$ and $A \cap B \neq \emptyset$. Recall that a graph is connected provided there is a path between every pair of its vertices. In his paper [1], Bosák proved: If S is a nondenumerable semigroup or a periodic semigroup with more than two elements, then its graph $G(\mathcal{S})$ is connected. Bosák then raised the following open problem.

Bosák's Problem [1, p. 122]: Does there exist a semigroup with more than two elements whose graph is disconnected?

The purpose of this article is to answer this problem, in the negative, by proving the following theorem.

Theorem. Every semigroup with more than two elements has a connected graph.

We remark that the particular semigroup $\{0, 1\}$ with the multiplication of integers has a disconnected graph, and this turns out to be the only one such, as the theorem asserted. The graph of the trivial semigroup, which consists of one element alone, is trivially connected. Thus, henceforth we need only to consider a semigroup with more than two elements.

We first prove two special cases which will be used in the proof of the general case. A unital [resp. left unital] semigroup is a semigroup with a unit (= identity) [resp. left unit (= left identity)].

Lemma 1. If S is a unital semigroup with more than two elements, then its graph $G(\mathcal{S})$ is connected.

Proof. Suppose, to obtain a contradiction, that there exists a unital semigroup S with more than two elements such that its graph $G(\mathcal{S})$ is not connected. Then, there exist two disjoint nonempty subsets \mathcal{S}_1 and \mathcal{S}_2 of \mathcal{S} such that $\mathcal{S}_1 \cup \mathcal{S}_2 = \mathcal{S}$, and no semigroup in \mathcal{S}_1 has an element in common with any semigroup in \mathcal{S}_2. Let 1 denote the unit of S; there is no loss of generality in assuming the semigroup

Received by the editors June 1, 1968.

1 I am indebted to Anthony C. Shershin for calling my attention to this problem.

343
Let S_1 be an arbitrary semigroup in S_1, and let $x \in S_2$. Then since the subsemigroup $\{1, x, x^2, x^3, \cdots \}$ intersects both $\{1\} \subseteq S_1$ and $S_2 \subseteq S_2$, by the disconnectedness of $G(S)$ we must have $S = \{1, x, x^2, x^3, \cdots \}$, because $\{1, x, x^2, x^3, \cdots \}$ cannot be a proper subsemigroup.

Case 1. $S = \{1, x, x^2, x^3, \cdots \}$ is finite.

In this case, S is a periodic semigroup with more than two elements, and hence by Theorem 1 of Bosák [1], its graph $G(S)$ is connected.

Case 2. $S = \{1, x, x^2, x^3, \cdots \}$ is infinite.

In this case, for any two positive integers m and n, $x^m \neq x^n$ if and only if $m \neq n$ [2, p. 19]. Consequently, $\{1, x^2, x^4, x^6, \cdots \}$ is a proper subsemigroup of S which intersects both $\{1\} \subseteq S_1$ and $S_2 \subseteq S_2$. This contradiction completes the proof of the lemma.

Lemma 2. If S is a left unital semigroup with more than two elements, then its graph $G(S)$ is connected.

Proof. Let e be a left unit of S, then there are the following two cases.

Case 1. $S = S e = \{xe: x \in S\}$.

In this case, e is also a right unit of S, and hence S has e as the unit. Consequently, by Lemma 1, the graph $G(S)$ is connected.

Case 2. $S \neq Se$.

Suppose that the graph $G(S)$ is not connected, then S is a disjoint union of its nonempty subsets S_1 and S_2 such that no semigroups in S_1 intersect any semigroup in S_2. Under this case, Se is a proper subsemigroup of S and hence Se must belong to either S_1 or S_2, say S_1. Take any subsemigroup S_2 from S_2, and take any element x from S_2. The set $S_3 = \{e, x, x^2, x^3, \cdots \} \cup \{xe, x^2e, x^3e, \cdots \}$, which is easily seen to be a subsemigroup of S, intersects both $S e \subseteq S_1$ and $S_2 \subseteq S_2$. Consequently, S_3 cannot be a proper subsemigroup of S. Thus, $S = \{e, x, x^2, x^3, \cdots \} \cup \{xe, x^2e, x^3e, \cdots \}$. Let $S_3 = \{e, x^2, x^4, x^6, \cdots \} \cup \{x^2e, x^4e, x^6e, \cdots \}$, which is readily seen to be a subsemigroup of S. As assumed in the beginning of this proof the graph $G(S)$ is disconnected, it follows from Theorem 1 of [1] that S must have infinitely many elements. Now, if $x \in \{e, x^2, x^4, x^6, \cdots \}$, then S_1 is finite and hence it is a member of S. If $x \notin \{e, x^2, x^4, x^6, \cdots \}$, then S_1 is a member of S also. On the other hand, since S_1 contains the element x^2e of $Se \subseteq S_1$ and also the element x^4 of $S_2 \subseteq S_2$, S_1 cannot belong to $S_1 \cup S_2 = S$. The contradiction proves that the graph $G(S)$ is connected.

We are now ready to prove our theorem stated earlier.
Proof of Theorem. Suppose, to obtain a contradiction, that there exists a semigroup S with more than two elements such that its graph $G(S)$ is disconnected. Then, there exist two vertices (proper subsemigroups) A and B such that there is no path connecting A and B. Choose two elements $a \in A$ and $b \in B$; and keep them fixed throughout the proof. Since aS and Sb are subsemigroups of S such that $a^* \in A \cap aS$, $ab \in aS \cap Sb$ and $b^* \in Sb \cap B$, we must have $aS = S$ or $Sb = S$. For, otherwise, there would be a path in $G(S)$ connecting A and B. Assume $aS = S$ (the case $Sb = S$ may be handled similarly), then $A_1 = \{x \in S \mid xS = S\}$ forms a subsemigroup containing a.

Case 1. $A_1 = S$; that is, $A_1 \subseteq S$.

From the choice of a, b in S and the assumption $A_1 \neq S$, it follows that $b \notin A_1$. Since $a^* \in A \cap Sa$, $ba \in bS \cap Sa$, $b^* \in bS \cap B$ and $bS \neq S$, we must have $Sa = S$. Otherwise, there would be a path in $G(S)$ connecting A and B. $Sa = S$ implies that there exists an element $e \in S$ such that $ea = a$. And $aS = S$ implies that for every $x \in S$ there exists an element $y \in S$ such that $x = ay$. Whence, $ex = e(ay) = (ea)y = ay = x$. Thus, S is left unital and therefore, by Lemma 2, the graph $G(S)$ is connected.

Case 2. $A_1 = S$; that is, $xS = S$ for all $x \in S$.

We divide this case into two subcases:

Subcase 2.1. There exists some $c \in S$ such that $Sc = S$.

Using the same arguments employed in Case 1 above, $cS = S = Sc$ implies that S is left unital, and hence that the graph $G(S)$ is connected.

Subcase 2.2. $Sx \neq S$ for all $x \in S$.

For any positive integers m and n, Sa^m and Sb^n are two proper subsemigroups of S such that $a^{m+1} \subseteq A \cap Sa^m$ and $b^{n+1} \subseteq B \cap Sb^n$. Hence $Sa^m \cap Sb^n = \emptyset$; for otherwise, there would be a path connecting A and B, contradicting the assumption about A and B. We next observe that $S = Sa^m \cup Sb^n$ for all positive integers m and n. For if otherwise, $a^{m+1} \subseteq A \cap (Sa^m \cup Sb^n)$ and $b^{n+1} \subseteq (Sa^m \cup Sb^n) \cap B$ imply that there is a path between A and B, which again is a contradiction.

From the above paragraph, we now conclude that $Sa = Sa^m$ and $Sb = Sb^n$ for all positive integers m and n. Let us denote $T = Sa$, then $aT = a(Sa) = (aS)a = Sa = T$ and $Ta = (Sa)a = Sa^2 = Sa = T$.

These imply that there exists an element $e \in T$ such that $ae = a$, and that there exists an element $t \in T$ such that $ta = e$. Whence,

$$e^2 = (ta)e = t(ae) = ta = e.$$
Since $eS = S$ and $e^2 = e$, e is a left unit of S. By Lemma 2, the graph $G(8)$ must be connected. Q.E.D.

The distance $d(A, B)$ between two vertices A and B of a graph is the number of edges in a shortest path between these vertices (if such a path does not exist, we define $d(A, B) = +\infty$; of course $d(A, A) = 0$). The diameter of a graph is the supremum of $d(A, B)$, where (A, B) runs over all pairs of vertices of the graph. It would be interesting to know what is the diameter of the graph of a semigroup.

Added in proof. From the December 1968 issue of Mathematical Reviews, the author has learned that Bedřich Pondělíček, in Diameter of a graph of a semigroup (Czechoslovakian, Russian and English summaries), Časposis Pěst. Mat. 92 (1967), 206–211, also solved the Bosák problem and he further obtained that the diameter of a semigroup with more than two elements does not exceed three.

References