NOETHERIANNESS OF RINGS OF HOLOMORPHIC
FUNCTIONS ON STEIN COMPACT SUBSETS

YUM-TONG SIU

In [2] Frisch used the following to prove that for a holomorphic
map φ the set of points where a coherent complex-analytic sheaf is
not φ-flat is a complex-analytic subvariety:

Suppose A is a Stein compact subset of a real- or complex-
analytic space \((X, \emptyset)\). If A is semianalytic, then \(\Gamma(A, \emptyset)\) is
Noetherian.

A counterexample was constructed by Frisch in [2] to show that (1)
is in general false if A is not semianalytic. In this note we give a
necessary and sufficient condition for a Stein compact subset A of a
complex-analytic space \((X, \emptyset)\) so that \(\Gamma(A, \emptyset)\) is Noetherian (and
also an analogue for real-analytic spaces):

Theorem 1. Suppose A is a Stein compact subset of a (not necessarily
reduced) complex-analytic space \((X, \emptyset)\), i.e. A admits a neighborhood
basis in X consisting of Stein open subsets of X. Then \(\Gamma(A, \emptyset)\) is
Noetherian if and only if \(Y \cap A\) has only a finite number of topological
components for every complex-analytic subvariety Y defined in any open
neighborhood of A.

If \(E\) is a metric space, then \(d_E\) denotes the metric of \(E\). For \(x \in E\)
and \(A, C \subseteq E\), \(d_E(x, A) = \inf_{y \in A} d_E(x, y)\) and \(d_E(C, A) = \inf_{y \in C} d_E(y, A)\).
For \(\epsilon > 0\) and \(x \in E\),
\(B_E(x; \epsilon) = \{y \in E | d_E(x, y) < \epsilon\}\).
For \(\epsilon > 0\) and
\(x, y \in E\) a finite sequence of points \(x_0, \ldots, x_m\) in \(E\) is called an \(\epsilon\)-chain
joining \(x\) to \(y\) if \(x_0 = x, x_m = y\) and \(d_E(x_i, x_{i+1}) < \epsilon\) for \(0 \leq i < m\).
By [4, 5, T(b), p. 169], we have:

If \(x\) and \(y\) are points of a compact subset \(K\) of a metric space, then \(x\) and \(y\) are in the same topological component of \(K\) if and only if, for every \(\epsilon > 0\), \(x\) can be joined to \(y\) by an \(\epsilon\)-chain in \(K\).

Lemma 1. Suppose \(E\) and \(F\) are metric spaces and \(f: E \to F\) is con-
tinuous, proper, open, and nowhere degenerate (i.e. inverse images of
discrete sets are discrete). If \(K\) is a connected compact subset of \(F\), then
\(f^{-1}(K)\) has only a finite number of topological components.

Proof. We can assume w.l.o.g. that \(K = F\). Since \(f\) is proper and

Received by the editors July 12, 1968.

1 Supported partially by NSF Grant GP-7265.

483
open, \(f(E) \) is both open and closed in \(F \). \(f(E) = F \). First we prove the following:

\[(3) \quad \text{For every } \epsilon > 0 \text{ there exists } \delta > 0 \text{ such that, for every } a \in E, f(B_F(a; \epsilon)) \supset B_F(f(a); \delta) \]

If (3) is not true, then there exist (i) \(\epsilon > 0 \), (ii) a strictly decreasing sequence of positive numbers \(\{ \delta_n \} \) approaching 0, and (iii) a sequence \(\{ a_n \} \) in \(E \) such that \(f(B_F(a_n; \epsilon)) \supset B_F(f(a_n); \delta_n) \). Take \(x_n \in B_F(f(a_n); \delta_n) - f(B_F(a_n; \epsilon)) \). Since \(E \) and \(F \) are both compact, \(x_n \to x^* \) in \(F \) and \(a_n \to a^* \) in \(E \) for some subsequence \(\{ n_m \} \) of \(\{ n \} \).

\(f(a^*) = x^* \), because \(d_F(f(a_n), x_n) < \delta_n \) and \(\delta_n \to 0 \). Since \(B_F(a_n; \epsilon/2) \) and \(f(B_F(a_n; \epsilon/2)) \) are open neighborhoods of \(a^* \) and \(x^* \) respectively, there exists \(m_0 \) such that \(a_{n_m} \in B_F(a^*; \epsilon/2) \) and \(x_{n_m} \in f(B_F(a^*; \epsilon/2)) \) for \(m \geq m_0 \). Hence, for \(m \geq m_0, f(B_F(a_{n_m}; \epsilon)) \supset f(B_F(a^*; \epsilon/2)) \supset x_{n_m} \). Contradiction. (3) is proved.

Fix \(y \in F \). \(f^{-1}(y) \) is finite. Let \(f^{-1}(y) = \{ b_1, \ldots, b_k \} \). Take arbitrarily \(a \in E \). We are going to prove the following:

\[(4) \quad \text{For any natural number } n \text{ there exists } 1 \leq j_n \leq k \text{ such that } a \text{ can be joined by some } 1/n\text{-chain in } E \text{ to } b_{j_n} \]

Fix a natural number \(n \). By (3) there exists \(\delta > 0 \) such that

\[(5) \quad f(B_F(c; 1/n)) \supset B_F(f(c); \delta) \quad \text{for every } c \in E \]

Since \(F \) is compact and connected, by (2) there exists a \(\delta \)-chain \(y_0, \ldots, y_m \) in \(F \) joining \(f(a) \) to \(y \). By (5) and by induction on \(i \) we can find \(z_i \in F \) for \(0 \leq i \leq m \) such that \(z_0 = a, f(z_i) = y_i, \) and \(d_E(z_{i-1}, z_i) < 1/n \) for \(1 \leq i \leq m \). \(f(z_m) = y_m = y \) implies that \(z_m = b_{j_n} \) for some \(1 \leq j_n \leq k \). (4) is proved. There exists \(1 \leq j^* \leq k \) such that \(j^* = j_n \) for an infinite number of natural numbers \(n \). Hence, for any \(\epsilon > 0 \), \(a \) can be joined to \(j^* \) by some \(\epsilon \)-chain in \(E \). By (2) \(a \) is in the same topological component of \(E \) as \(b_{j^*} \). \(E \) has only a finite number of topological components. Q.E.D.

Lemma 2. Suppose \(E \) is a compact metric space and \(A \) is a nonempty compact topological component of an open subset \(U \) of \(E \). Then \(A \) is a topological component of \(E \).

Proof. Let \(A \) be the topological component of \(E \) containing \(A \). We need only prove that \(A \subset U \). Suppose not. Fix \(b \in A - U \) and \(a \in A \). \(\epsilon = d(A, E - U) > 0 \). Let \(C = \{ x \in E | \epsilon/3 \leq d(x, A) \leq 2\epsilon/3 \} \) and \(D = \{ x \in E | d(x, A) \leq 2\epsilon/3 \} \). We are going to prove the following:
If \(n \) is any natural number \(>3/\varepsilon \), then \(a \) can be joined to some \(c_n \) in \(C \) by some \(1/n \)-chain in \(D \).

Take \(n>3/\varepsilon \). \(a \) can be joined to \(b \) by some \(1/n \)-chain \(x_0, \ldots, x_m \) in \(E \). Let \(i \) be the smallest integer such that \(x_i \in D \). \(0<i\leq m \). \(d(x_{i-1}, x_i) <1/n <\varepsilon/3 \) implies that \(x_{i-1} \in C \). Set \(c_n = x_{i-1} \). Then \(x_0, \ldots, x_{i-1} \) is an \(1/n \)-chain in \(D \) joining \(a \) to \(c_n \in C \). (6) is proved. Since \(C \) is compact, \(c_{n_m} \to c^* \) in \(C \) for some subsequence \(\{ n_m \} \) of \(\{ n \} \). For any \(\delta >0 \), \(a \) can be joined to \(c^* \) by some \(\delta \)-chain in \(D \). By (2) \(c^* \) belongs to the topological component of \(D \) containing \(a \). Since \(D \subseteq U \) and \(A \) is the topological component of \(U \) containing \(a \), \(c^* \in A \), contradicting \(d(c^*, A) \geq \varepsilon/3 \). Q.E.D.

Lemma 3. Suppose \(X \) and \(Y \) are connected, reduced, normal complex-analytic spaces of dimension \(n \). If \(f: X \to Y \) is a nowhere degenerate proper holomorphic map. Then \(f \) is open.

Proof. Take \(x \in X \). Let \(D \) be an open neighborhood of \(x \) in \(X \). We have to show that \(f(D) \) is a neighborhood of \(f(x) \). We can assume w.l.o.g. that the closure \(D^- \) of \(D \) is compact and \(D^- \cap f^{-1}(f(x)) = \{ x \} \). \(f(x) \notin f(\partial D) \), where \(\partial D \) is the boundary of \(D \). Since \(Y \) is normal, there is an open neighborhood \(G \) of \(f(x) \) such that \(G \cap f(\partial D) = \emptyset \) and \(G \) is an irreducible complex-analytic space. Let \(H = D \cap f^{-1}(G) \). Let \(g: H \to G \) be induced by \(f \). Then \(g \) is proper and nowhere degenerate. By the proper mapping theorem \([3, \text{V.C.5, p. 162}]\), \(f(H) \) is an \(n \)-dimensional complex-analytic subvariety of \(G \). Since \(G \) is an \(n \)-dimensional irreducible complex-analytic space, \(f(H) = G \). Q.E.D.

Lemma 4. Suppose \(A \) is a compact subset of a complex-analytic space \(X \) such that \(Y \cap A \) has only a finite number of topological components if \(Y \) is a complex analytic subvariety in some open neighborhood of \(A \) in \(X \). Suppose \(U \) is an open neighborhood of \(A \) in \(X \) and \(f: Z \to U \) is a proper nowhere degenerate holomorphic map, where \(Z \) is a complex-analytic space. Then \(f^{-1}(A) \) has only a finite number of topological components.

Proof. We can assume w.l.o.g. that \(X \) and \(Z \) are reduced and by virtue of the compactness of \(A \) also that \(\dim Z < \infty \). We use induction on \(\dim Z \). The case \(\dim Z = 0 \) is trivial. Suppose \(n \geq 1 \) and the lemma is true for \(\dim Z < n \). Suppose \(\dim Z = n \). Let \(\pi: \hat{Z} \to Z \) be the normalization of \(Z \). We need only prove that \((f \circ \pi)^{-1}(A) \) has only a finite number of topological components. Hence we can assume w.l.o.g. that \(Z \) is normal. Since \(f^{-1}(A) \) intersects only a finite number of branches of \(Z \), we can assume that \(Z \) is connected. \(V = f(Z) \) is an irreducible complex analytic subvariety of dimension \(n \) in \(U \). Let
σ: \(\tilde{V} \to V \) be the normalization of \(V \). There is a unique nowhere degenerate proper holomorphic map \(\tilde{f}: \tilde{Z} \to \tilde{V} \) such that \(\sigma \circ \tilde{f} = f \). By Lemma 3 \(\tilde{f} \) is open. By Lemma 1 we need only prove that \(\sigma^{-1}(A) \) has only a finite number of topological components. Let \(\tilde{W} \) be the set of all singular points of \(V \). Let \(\tilde{W} = \sigma^{-1}(W) \) and \(\tau = \sigma|_{\tilde{W}} \). Since \(\text{dim } \tilde{W} < \infty \), by induction hypothesis \(\tau^{-1}(A) \) has only a finite number of topological components \(D_1, \ldots, D_k \). Let \(\sigma^{-1}(A) = \bigcup_{i \in I} E_i \) be the decomposition into topological components. Since \(D_i \) is a connected subset of \(\sigma^{-1}(A) \), for some \(i_j \in I, D_j \subset E_{i_j} \). Let \(J = I - \{i_1, \ldots, i_k\} \). Then \(E_i \cap \tilde{W} = \emptyset \) for \(i \in J \). For \(i \in J, E_i \) is a topological component of \(\sigma^{-1}(A) - \tilde{W} \). Since \(\tilde{V} - \tilde{W} \) is biholomorphic to \(V - W, \sigma(E_i), i \in J, \) are distinct topological components of \(A \cap V - W \). By Lemma 2, \(\sigma(E_i), i \in J, \) are distinct topological components of \(A \cap V \). Hence \(J \) is finite. \(I \) is finite. Q.E.D.

Proof of Theorem 1. (a) The "only if" part. Suppose \(V \) is a complex-analytic subvariety of an open neighborhood \(U \) of \(A \) in \(X \) such that \(V \cap A \) has an infinite number of topological components. We are going to construct by induction on \(n \) subsets \(V_n \) of \(V \cap A \) such that:

(i) \(V_1 = V \cap A \),

(ii) \(V_{n+1} \) is a proper open and closed subset of \(V_n \), and

(iii) \(V_n \) has an infinite number of topological components.

Set \(V_1 = V \cap A \). Suppose we have constructed \(V_n \). Since \(V_n \) is not connected, \(V_n \) is the disjoint union of two proper open and closed subsets \(B \) and \(C \) of \(V_n \). Since \(V_n \) has an infinite number of topological components, one of \(B \) and \(C \), say \(B \), has an infinite number of topological components. Set \(V_{n+1} = B \). The construction is complete. Let \(I_n = \{ f \in \Gamma(A, \mathcal{O}) \mid f_x \text{ is not a unit of } \mathcal{O}_x \text{ for } x \in V_n \} \). \(I_n \) is an ideal in the ring \(\Gamma(A, \mathcal{O}) \). \(I_n \subset I_{n+1} \). To prove that \(\Gamma(A, \mathcal{O}) \) is not Noetherian, we need only show

\[
(7) \quad I_n \not\subset I_{n+1}.
\]

Fix \(n \). \(V_{n+1} \) and \(V \cap A - V_{n+1} \) are two disjoint compact subsets of \(U \). Let \(G \) and \(H \) be two disjoint open subsets of \(U \) containing respectively \(V_{n+1} \) and \(V \cap A - V_{n+1} \). \((U - V) \cup G \cup H \) is an open neighborhood of \(A \). There exists a Stein open neighborhood \(D \) of \(A \) in \((U - V) \cup G \cup H \). \(D \cap V \subset G \cup H \). Let \(\mathcal{O} \) be the ideal-sheaf of \(V \) on \(U \). Let \(s \in \Gamma(D \cap V, \mathcal{O}/\mathcal{O}) \) be induced by the element \(\bar{s} \in \Gamma(G \cup H, \mathcal{O}) \) which is identically 0 on \(G \) and is identically 1 on \(H \). Since \(D \) is Stein, by Cartan's Theorem B (for not necessarily reduced complex-analytic Stein spaces) \(s \) is induced by some \(\bar{t} \in \Gamma(D, \mathcal{O}) \). Let \(t = \bar{t} \mid A \). Take \(x \in V_n - V_{n+1} \). \(t_x \) is not a unit of \(\mathcal{O}_x \) for \(y \in V_{n+1} \), but \(t_x \) is a unit of \(\mathcal{O}_x \). \(t \in I_{n+1} - I_n \). (7) is proved.
(b) The “if” part. We can assume w.l.o.g. that \(n = \dim X < \infty \). Suppose that \(I \) is an ideal in the ring \(\Gamma(A, \emptyset) \). For \(0 \leq k \leq n+1 \) consider

\[
\text{For some open neighborhood } U_k \text{ of } A \text{ in } X \text{ there exist } f_1^{(k)}, \ldots, f_r^{(k)} \in \Gamma(U_k, \emptyset) \text{ such that (i) } (f_i^{(k)}|A) \subseteq I, \text{ (ii) if } f \in \Gamma(U, \emptyset) \text{ for } (8)_k \text{ some open neighborhood } U \text{ of } A \text{ in } U_k \text{ and } (f|A) \subseteq I, \text{ then for some open neighborhood } U' \text{ of } A \text{ in } U \text{ the complex-analytic subvariety } \{ x \in U' | f_x \in \sum_{i=1}^{r} \mathcal{O}_x(f_i^{(k)}) \} \text{ is of dimension } < k.
\]

We are going to prove \((8)_k\) by backward induction on \(k \). \((8)_{n+1}\) is obviously true. Suppose \((8)_k\) holds for \(m < k \leq n+1 \). On \(U_{m+1} \) let \(\mathcal{I} = \sum_{i=1}^{r} f_i^{(m+1)} \mathcal{O}_m^{(m+1)} \). Let \(\mathcal{G} \) be the ideal-sheaf on \(U_{m+1} \) defined as follows: for \(x \in U_{m+1} \), \(\mathcal{G}_x = \{ s \in \mathcal{O}_x \} \) for some open neighborhood \(D \) of \(x \) in \(U_{m+1} \) there exist \(t \in \Gamma(D, \emptyset) \) and a complex-analytic subvariety \(V \) of dimension \(\leq m \) in \(D \) such that \(t_y \in \mathcal{G}_y \) for \(y \in U_{m+1} - V \) and \(t_x = s \). \(\mathcal{G} \) is coherent and \(Y = \{ x \in U_{m+1} | \mathcal{G}_x \neq 0 \} \) is a complex-analytic subvariety of dimension \(\leq m \) in \(U_{m+1} \) ([6, Theorem 3]; cf. [7, Satz 3]).

Give \(Y \) the reduced complex-analytic structure. Let \(\pi : Y \to Y \) be the normalization of \(Y \). By Lemma 4, \(\pi^{-1}(A \cap Y) \) has only a finite number of topological components \(C_1, \ldots, C_p \). Take \(z_j \in C_j \) and let \(x_j = \pi(z_j), 1 \leq j \leq p \). Since, for \(x \in A, \mathcal{O}_x \) is Noetherian, for some open neighborhood \(U_m \) of \(A \) in \(U_{m+1} \) there exist \(g_1, \ldots, g_r \in \Gamma(U_m, \emptyset) \) such that \((g_i|A) \subseteq I \) for \(1 \leq i \leq r \) and

\[
\{(g_i)|z_j| 1 \leq i \leq r\} \text{ generates the same ideal in } \mathcal{O}_{z_j} \text{ as } \{(f_i)|f \in I\}, \quad 1 \leq j \leq p.
\]

Set \(q(m) = q(m+1) + r \). Define \(f_i^{(m+1)} = f_i^{(m+1)}|U_m \) for \(1 \leq i \leq q(m+1) \) and \(f_j^{(m+1)} = f_j \) for \(1 \leq j \leq r \). We claim that these satisfy \((8)_m\). Take \(f \in \Gamma(U, \emptyset) \) for some open neighborhood \(U \) of \(A \) in \(U_{m+1} \) such that \((f|A) \subseteq I \). By \((8)_{m+1}\), for some open neighborhood \(U'' \) of \(A \) in \(U \), \((f|U'') \in \Gamma(U'', \mathcal{G}) \). The complex-analytic subvariety

\[
Z = \{ x \in U'' | f_x \in \sum_{i=1}^{q(m)} \mathcal{O}_x(f_i^{(m)}) \}
\]

is contained in \(Y \). Let \(Z_i \) be the union of \(m \)-dimensional branches of \(Z \) not intersecting \(A \). Let \(U'' = U'' - Z_1 \) and \(Z_0 = Z \cap U'' \). All we have to prove is that \(Z_0 \) has no \(m \)-dimensional branch. Suppose the contrary. Let \(V \) be an \(m \)-dimensional branch of \(Z_0 \). \(\pi^{-1}(V) \cap C_j \neq \emptyset \) for some \(1 \leq j \leq p \). Let \(\pi^{-1}(U'' \cap Y) = \bigcup_{\lambda \in L} Y_\lambda \) be the decomposition into irreducible branches. Since \(\dim V = m \) and \(\dim Y \leq m \), \(\pi^{-1}(V) = \bigcup_{\lambda \in M} Y_\lambda \) for some subset \(M \) of \(L \). \(Y_\lambda \cap C_j \neq \emptyset \) for some \(\lambda \in M \). Since
$Y_x \cap \pi^{-1}(A \cap Y)$ is a union of topological components of $\pi^{-1}(A \cap Y)$, $C_i \subset Y_x \cap \pi^{-1}(A \cap Y)$. $z_i \in \pi^{-1}(V)$. $x_i \in V$, contradicting (9). Hence (8) is true for $0 \leq k \leq n+1$.

We claim that $\{\langle i_0(0) \rangle \mid 1 \leq i \leq q(0)\}$ generates I over $\Gamma(A, \emptyset)$. Take $g \in I$. Then $g=\hat{f}(A)$ for some $f \in \Gamma(U, \emptyset)$, where U is an open neighborhood of A in U. By (8) there exists an open neighborhood U' of A in U. Let W be a Stein open neighborhood of A in U'. Let $\phi: \emptyset(\emptyset) \to \sum_{i=1}^{q(0)} \emptyset i_i(0)$ be the sheaf-epimorphism on W defined by $\phi(s_1, \ldots, s_q(0)) = \sum_{i=1}^{q(0)} s_i(0)i$ for $(s_1, \ldots, s_q(0)) \in \emptyset(0)$ and $x \in W$. Since $H^1(W, \text{Ker } \phi) = 0$, there exist $a_1, \ldots, a_q(0) \in \Gamma(W, \emptyset)$ such that $f = \sum_{i=1}^{q(0)} a_q(0)i_i$ on W. Let $b_i = a_i|A$, $1 \leq i \leq q(0)$. Then $g = \sum_{i=1}^{q(0)} b_i(i_i(0))$. Q.E.D.

Corollary. Suppose A is a Stein compact subset of a complex-analytic space (X, \emptyset) and A is contained in an 1-dimensional complex-analytic subvariety of X. Then $\Gamma(A, \emptyset)$ is Noetherian if and only if A has only a finite number of topological components.

We are going to give a real-analytic analogue of Theorem 1.

Lemma 5. Suppose A is a compact subset of \mathbb{R}^n. Then A is a Stein compact subset of \mathbb{C}^n.

Proof. Take an open neighborhood U of A in \mathbb{C}^n. We have to prove that A has a Stein open neighborhood in U. Let $W = U \cap \mathbb{R}^n$. For some real-analytic functions g_1, \ldots, g_k on W the map $(g_1, \ldots, g_k): W \to \mathbb{R}^k$ imbeds W as a real-analytic submanifold of \mathbb{R}^k [1, Folgerung zu Satz 8, p. 53].

For some open neighborhood G of W in U, g_1, \ldots, g_k are the restriction to W of holomorphic functions f_1, \ldots, f_k on G. Take $c > \sup \{|g_j(x)| \mid x \in A, 1 \leq j \leq k\}$. Let $K = \{x \in W \mid |g_j(x)| \leq c, 1 \leq j \leq k\}$. Let H be a relatively compact open neighborhood of K in G. Let $z_1 = x_1 + i y_1, \ldots, z_n = x_n + i y_n$ be the coordinates of \mathbb{C}^n. For $\epsilon > 0$ let

$$D_\epsilon = \{x \in G \mid |y_1(x)| < \epsilon, \ldots, |y_n(x)| < \epsilon, |f_1(x)| < \epsilon, \ldots, |f_k(x)| < \epsilon\}.
$$

D_ϵ is relatively compact in G for some $\delta > 0$, because $\cap_{\epsilon > 0}(D_\delta \cap H) = K \subset H$ [4, 5, F(a), p. 163]. D_ϵ is a Stein open neighborhood of A in U. Q.E.D.

Theorem 2. Suppose A is a compact subset of a coherent real-analytic space (X, \emptyset) [1, p. 44]. Then $\Gamma(A, \emptyset)$ is Noetherian if and only if $Z \cap A$ has only a finite number of topological components for every real-analytic subvariety Z of an open neighborhood U of A in X definable by a coherent ideal-sheaf on U.
Proof. (a) The “if” part. W.l.o.g. we can suppose that X is a coherent real-analytic subvariety of \mathbb{R}^n for some n [1, Folgerung zu Satz 8, p. 53]. Let \mathfrak{s} be the ideal-sheaf of X on \mathbb{R}^n. Let \mathfrak{A} and \mathfrak{O} be respectively the structure-sheaves of \mathbb{R}^n and \mathbb{C}^n. By Lemma 5 A is a Stein compact subset of \mathbb{C}^n. Let Y be an arbitrary complex-analytic subvariety in some open neighborhood U of A in \mathbb{C}^n. Let G be a Stein open neighborhood of A in U. Let G be a relatively compact open neighborhood of A in \mathcal{G}. $Y \cap G$ can be defined by a finite number of holomorphic functions f_1, \ldots, f_k on G. Let $W = G \cap \mathbb{R}^n$ and $Z = Y \cap W$. Z is a real-analytic subvariety of W definable by a coherent ideal-sheaf on W, because Z is the set of common zeros of the real parts and imaginary parts of the restrictions of f_1, \ldots, f_k to W. $Y \cap A = Z \cap A$ has only a finite number of topological components. By Theorem 1 $\Gamma(A, 0)$ is Noetherian. Since on $A \mathfrak{A} = \mathfrak{A} \otimes_\mathbb{R} \mathfrak{O}$, $\Gamma(A, \mathfrak{A})$ is Noetherian. Since for any open neighborhood D of A in \mathbb{R}^n, $H^1(D, \mathfrak{A}) = 0$ [1, Satz 9, p. 54], $\Gamma(A, \mathfrak{A}) \rightarrow \Gamma(A, \mathfrak{A})$ is surjective. Hence $\Gamma(A, 0\mathfrak{A})$ is Noetherian.

(b) The “only if” part is proved in exactly the same way as that of Theorem 1 except that instead of Cartan’s Theorem B, Satz 9 of [1] is used. Q.E.D.

Corollary. Suppose A is a compact subset of a coherent real-analytic space $\Gamma(X, \mathfrak{A})$ and A is contained in an 1-dimensional real-analytic subvariety of X definable by a coherent ideal-sheaf. Then $\Gamma(A, \mathfrak{A})$ is Noetherian if and only if A has only a finite number of topological components.

Remark. (1) follows from Theorems 1 and 2 and the fact that a compact semianalytic set has only a finite number of topological components (see [5]).

References

University of Notre Dame