A NOTE ON A THEOREM OF JACOBSON

T. S. RAVISANKAR

The question as to whether every derivation of a simple algebra is inner, is still unsettled. The simple proofs given below of Theorem A, which is a special case of a well-known theorem (see [4, pp. 22–23]), and that of Theorem B would possibly be a new approach to this question.

Theorem A. If A is a simple algebra with identity over an algebraically closed field F of characteristic zero, then every derivation of A is inner.

Proof. In the first instance, let A have an identity or not. Let R_x (L_x) denote the right (left) multiplication in A, and D be a derivation of A. Then A has neither proper ideals nor proper D-ideals. In other words, the Lie algebra L (L') generated by R_x, L_x (R_x, L_x and the derivation D) is irreducible. Moreover, $L' = L + \{\alpha D\}_{\alpha \in F}$ (a vector space sum and not necessarily a direct sum), and L is an ideal of L'. Further, by a theorem of Jacobson [1, p. 47], we have $L = C \oplus [L, L]$; $L' = C' \oplus [L', L']$ for centers C, C' of L, L'; $[L, L], [L', L']$ are semisimple; $[L, L]$ is an ideal of $[L', L']$. Any transformation T in C commutes with the irreducible associative algebra generated by R_x, L_x and hence should be a multiple of the identity transformation I, by Schur's lemma. Now, if A contains an identity, $C = F_1$, $C = F_1$; since the dimension of L' is at the most greater by unity than that of L, and since $[L', L']$ cannot have a one dimensional (abelian) ideal complementary to $[L, L]$, $[L, L] = [L', L']$; i.e., $L = L'$, or, $D \subseteq L$. Thus, every derivation of A is inner.

Remark 1. In case A is any simple nonassociative algebra, then $C \subseteq C'$ and therefore $[L, L] = [L', L']$ in this case also. If, in addition $C = C'$ for every derivation D of A, then every derivation of A will be inner. Because F is algebraically closed, $C = 0$ or $C = F_1$, $C' = 0$ or $C' = F_1$. Since $C = F_1$ implies $C' = F_1 = C$ and since every derivation is inner in this case as well as when $C' = 0$, the question raised at the outset boils down to the consideration of the only case $C = 0$, $C' = F_1$. The plausibility of this case remains to be seen.

Now, in the case of simple Lie algebra A over a field F of characteristic zero, $L = \{\text{ad } x\}_{x \in A}$; $L' = L + \{\alpha D\}_{\alpha \in F}$. Since A is simple, the center of $A = \{x \in A \mid \text{ad } x = 0\} = \{0\}$. If $ad y \in \text{center } C$ of L, then

Received by the editors August 20, 1968.

753
\[[\text{ad } x, \text{ad } y] = \text{ad}[x, y] = 0 \] for every \(x \) in \(A \); hence \([x, y] = 0\), i.e., \(\text{ad } y = 0 \) and \(C = 0 \). If \(\text{ad } z + \alpha D \) belongs to the center \(C' \) of \(L' \), then \([\text{ad } z + \alpha D, \text{ad } x] = 0\) for all \(x \), i.e., \(\text{ad}[z, x] = \alpha \text{ ad } x D = 0 \) for all \(x \) in \(A \), or, \([z, x] - \alpha x D = 0\), i.e., \(-(\text{ad } z + \alpha D) = 0 \). Hence \(C' = 0 \). Thus \(L, L' \) are semisimple \([1, p. 47]\). Further arguments as in the proof of Theorem A yield

Theorem B. Every derivation of a simple Lie algebra \(A \) over a field of characteristic zero is inner.

Remark 2. Theorem B is, more generally, true for a simple Malcev algebra \(A \) \([3]\). For, the center \(C \) of \(L \) is then known to be the zero ideal \([2, \text{Corollary 5.32}]\). A similar argument shows that the center \(C' \) of \(L' \) is also the zero ideal.

References

The Ramanujan Institute, University of Madras