A NOTE ON A THEOREM OF JACOBSON

T. S. RAVISANKAR

The question as to whether every derivation of a simple algebra is inner, is still unsettled. The simple proofs given below of Theorem A, which is a special case of a well-known theorem (see [4, pp. 22-23]), and that of Theorem B would possibly be a new approach to this question.

Theorem A. If \(A \) is a simple algebra with identity over an algebraically closed field \(F \) of characteristic zero, then every derivation of \(A \) is inner.

Proof. In the first instance, let \(A \) have an identity or not. Let \(R_x (L_x) \) denote the right (left) multiplication in \(A \), and \(D \) be a derivation of \(A \). Then \(A \) has neither proper ideals nor proper \(D \)-ideals. In other words, the Lie algebra \(L (L') \) generated by \(R_x, L_x (R_x, L_x \) and the derivation \(D \)) is irreducible. Moreover, \(L' = L + \{ \alpha D \}_{\alpha \in F} \) (a vector space sum and not necessarily a direct sum), and \(L \) is an ideal of \(L' \). Further, by a theorem of Jacobson [1, p. 47], we have \(L = C \oplus [LL]; L' = C' \oplus [LL'] \) for centers \(C, C' \) of \(L, L' \); \([LL], [LL'] \) are semisimple; \([LL] \) is an ideal of \([LL'] \). Any transformation \(T \) in \(C \) commutes with the irreducible associative algebra generated by \(R_x, L_x \) and hence should be a multiple of the identity transformation \(I \), by Schur's lemma. Now, if \(A \) contains an identity, \(C = F \), \(C' = FI \); since the dimension of \(L' \) is at the most greater by unity than that of \(L \), and since \([LL'] \) cannot have a one dimensional (abelian) ideal complementary to \([LL] \), \([LL'] \); i.e., \(L = L' \), or, \(D \subseteq L \). Thus, every derivation of \(A \) is inner.

Remark 1. In case \(A \) is any simple nonassociative algebra, then \(C \subseteq C' \) and therefore \([LL] = [LL'] \) in this case also. If, in addition \(C = C' \) for every derivation \(D \) of \(A \), then every derivation of \(A \) will be inner. Because \(F \) is algebraically closed, \(C = 0 \) or \(C = FI \), \(C' = 0 \) or \(C' = FI \). Since \(C = FI \) implies \(C' = FI = C \) and since every derivation is inner in this case as well as when \(C' = 0 \), the question raised at the outset boils down to the consideration of the only case \(C = 0 \), \(C' = FI \). The plausibility of this case remains to be seen.

Now, in the case of simple Lie algebra \(A \) over a field \(F \) of characteristic zero, \(L = \{ \text{ad } x \}_{x \in A}; L' = L + \{ \alpha D \}_{\alpha \in F} \). Since \(A \) is simple, the center of \(A \) is \(\{ x \in A \mid \text{ad } x = 0 \} = \{ 0 \} \). If \(y \in \text{center } C \) of \(L \), then

Received by the editors August 20, 1968.
\[\text{ad } x, \text{ ad } y\] = \text{ad}[x, y] = 0 \text{ for every } x \text{ in } A; \text{ hence } [x, y] = 0, \text{ i.e.,}\ad y = 0 \text{ and } C = 0. \text{ If ad } z + \alpha D \text{ belongs to the center } C' \text{ of } L', \text{ then } [\text{ad } z + \alpha D, \text{ ad } x] = 0 \text{ for all } x, \text{ i.e., } \text{ad}[z, x] - \alpha \text{ ad } xD = 0 \text{ for all } x \text{ in } A, \text{ or, } [z, x] - \alpha xD = 0, \text{ i.e., } -(\text{ad } z + \alpha D) = 0. \text{ Hence } C' = 0. \text{ Thus } L, L' \text{ are semisimple [1, p. 47]. Further arguments as in the proof of Theorem A yield}

Theorem B. Every derivation of a simple Lie algebra \(A \) over a field of characteristic zero is inner.

Remark 2. Theorem B is, more generally, true for a simple Malcev algebra \(A \) [3]. For, the center \(C \) of \(L \) is then known to be the zero ideal [2, Corollary 5.32]. A similar argument shows that the center \(C' \) of \(L' \) is also the zero ideal.

References

The Ramanujan Institute, University of Madras