FUNCTIONS THAT OPERATE IN THE FOURIER ALGEBRA OF A COMPACT GROUP

CHARLES F. DUNKL

0. Only real-analytic functions operate in the Fourier algebra of any compact group that has an infinite abelian subgroup. This extends the theorems of Helson, Kahane, Katznelson, and Rudin [4] which apply to the algebra of absolutely convergent Fourier series on compact abelian groups. The Fourier algebra of a locally compact group has been studied by H. Mirkil [6], W. F. Stinespring [9], R. A. Mayer [5], C. Herz [3], and most thoroughly by P. Eymard [1]. We will state here the relevant definitions and facts, and prove that the restriction of the Fourier algebra to a closed subgroup is the Fourier algebra of the subgroup, and use this to lift up the theorem on operating functions.

1. Definitions and notation. Let \(G \) be a compact group, \(\hat{G} \) the set of equivalence classes of irreducible unitary continuous representations (henceforth “representation” means “unitary continuous representation”) and if \(\alpha \in \hat{G} \), then \(T_\alpha \) is some element of the class \(\alpha \). \(T_\alpha \) is an irreducible representation of \(G \) acting on a \(d_\alpha \)-dimensional complex space \(V_\alpha \), and \(\chi_\alpha \), the character of \(\alpha \), is given by \(\chi_\alpha(x) = \text{Tr}(T_\alpha(x)) \), for all \(\alpha \in \hat{G} \) (\(\text{Tr} \equiv \text{Trace} \)). (Naimark’s book [7] is a reference for these statements on \(\hat{G} \) and the Fourier transform.) \(C(G), L^r(G), M(G) \) denote the space of complex continuous functions on \(G \), \(L^r \) with respect to the normalized Haar measure (\(\int_G dx = 1 \)) on \(G \), and the space of regular Borel measures on \(G \) respectively.

For \(f \in L^1(G), \mu \in M(G), \alpha \in \hat{G} \) define
\[
\hat{f}_\alpha = \int_G f(x) T_\alpha(x^{-1}) dx, \quad \hat{\mu}_\alpha = \int_G T_\alpha(x^{-1}) d\mu(x);
\]
these are linear operators on \(V_\alpha \), with operator norms denoted by \(\| f_\alpha \|_\infty \), \(\| \hat{\mu}_\alpha \|_\infty \) respectively, and \(\| f_\alpha \|_\infty \leq \| f \|_1 \), \(\| \hat{\mu}_\alpha \|_\infty \leq \| \mu \| \). If \(f \in L^2(G) \), then \(f \) has the Fourier series \(f(x) \sim \sum_{\alpha \in \hat{G}} d_\alpha \text{Tr}(f \delta_\alpha(x)) \) (\(L^2 \)-convergence) and \(\| f \|_2^2 = \sum_{\alpha \in \hat{G}} d_\alpha \text{Tr}(f^* f_\alpha) \) (\(* \equiv \text{adjoint} \)).

For any linear operator \(U \) on \(V_\alpha \), \(1 \leq p < \infty \) define \(\| U \|_p = (\text{Tr}(U^* U)^{p/2})^{1/p} = (\text{Tr} |U|^p)^{1/p} \) (see e.g. R. Mayer [5]). Then the Fourier algebra \(A(G) \) may be defined as follows:

Received by the editors June 22, 1968.

540
THE FOURIER ALGEBRA OF A COMPACT GROUP

\[A(G) = \left\{ f \in L^1(G) : \|f\|_A = \sum_{a \in G} d_a |\hat{f}_a|_1 < \infty \right\} . \]

If \(f \in A(G) \) then the inequality
\[| \text{Tr}(\hat{f}_a T_a(x)) | \leq \|\hat{f}_a\|_1 \| T_a(x) \|_\infty = \|\hat{f}_a\|_1, \]
shows that the Fourier series \(\sum_{a \in G} d_a \text{Tr}(\hat{f}_a T_a(x)) \) converges uniformly and absolutely, thus \(A(G) \subset C(G) \) and \(\|f\|_\infty \leq \|f\|_A \). Note \(\|\hat{f}\|_A = \|\hat{f}\|_A \), so \(A(G) \) is symmetric.

Observe if \(G \) is abelian then \(A(G) = (L^1(\hat{G}))^\wedge \), the space of absolutely convergent Fourier series. P. Eymard has shown that \(A(G) \) is a commutative Banach algebra, with identity, under pointwise multiplication, and to each maximal ideal \(M \) there corresponds \(x_M \in G \) such that \(M = \{ f : f(x_M) = 0 \} \); that is, \(A(G) \) is a symmetric algebra of continuous functions on its maximal ideal space \(G \). This of course shows that if \(\psi \) is real-analytic on a region \(E, f \in A(G) \), and range \(f \subset E \), then \(\psi \circ f \in A(G) \).

We state two lemmas to tie our definition of \(A(G) \) together with Eymard’s. For \(\mu \in M(G) \), let \(\|\mu\|_\infty = \sup_{a \in G} \|\hat{\mu}_a\|_\infty (\leq \|\mu\|) \).

Lemma 1. For \(f \in C(G) \)
\[\|f\|_A = \sup \left\{ \left| \int_G f \, d\mu \right| : \mu \in M(G), \|\mu\|_\infty \leq 1 \right\}. \]

Lemma 2.
\[\|\hat{\mu}\|_\infty = \sup \{ \|f \ast \mu\|_2 : f \in L^2(G), \|f\|_2 \leq 1 \} \]

\((\ast = \text{convolution})\).

2. Induced representations. (For reference see R. Godement [2].) Let \(H \) be a closed subgroup of \(G \) (then \(\hat{H} \) is defined similarly to \(\hat{G} \), and \(\tau \) is an element of the class \(i \in \hat{H} \), with character \(\phi_i \) and dimension \(d_i \)). For \(\alpha \in \hat{G} \), \(T_a \) restricted to \(H \) is a representation of \(H \) hence it is a direct sum of irreducible representations of \(H \), say \(T_a(h) = \sum \Theta_{i \in \hat{H}} n_a(i) \tau_i(h) \) for all \(h \in H \) where \(n_a(i) \) is the number of times that \(T_a \mid_H \) contains \(\tau_i \); for a fixed \(\alpha \), \(n_a(i) > 0 \) for only a finite number of \(i \in \hat{H} \) since \(d_a = \sum_{i \in \hat{H}} n_a(i) d_i \).

For \(i \in \hat{H} \), let \(\phi'_i \) be the element of \(M(G) \) defined by \(\int_H f(h) \phi'_i(h) \, dh \) for all \(f \in C(G) \) (\(dh = \text{normalized Haar measure on } H \)). \(\phi'_i \) is called the generalized character of the representation of \(G \) induced by \(\tau_i \). Now for \(\alpha \in \hat{G} \), \((\phi'_i)_{\alpha} = \int_H T_a(h^{-1}) \phi_i(h) \, dh \), thus \((\phi'_i)_{\alpha} \neq 0 \) if and only if \(n_a(i) > 0 \), but \(\phi'_i \neq 0 \) in \(M(G) \); therefore there exists at least one \(\alpha \in \hat{G} \) such that \(n_a(i) > 0 \). Let \(\rho \) be the restriction map: \(C(G) \rightarrow C(H) \), then \(\rho^* \) is an injection: \(M(H) \rightarrow M(G) \).
Lemma 3. Let $\mu \in \mathcal{M}(H)$, then $\|\hat{\mu}\|_{\infty} = \|\hat{\mu} \circ \mu\|_{\infty}$.

Proof.

$$\|\hat{\mu} \circ \mu\|_{\infty} = \sup_{\alpha \in \hat{G}} \left\| \int_H T_{\alpha}(h^{-1}) d\mu(h) \right\|_{\infty}$$

$$= \sup_{\alpha \in \hat{G}} \left\| \sum_{i \in \hat{H}} \otimes n_{\alpha}(i) \hat{\mu}_i \right\|_{\infty}$$

$$= \sup_{\alpha \in \hat{G}} \max_{n_{\alpha}(i) > 0} \|\hat{\mu}_i\|_{\infty} = \sup_{i \in \hat{H}} \|\hat{\mu}_i\|_{\infty} = \|\hat{\mu}\|_{\infty}. \quad \text{Q.E.D.}$$

3. Main theorems.

Theorem 1. $\mathcal{A}(G) \mid H = \mathcal{A}(H)$; if $F \in \mathcal{A}(G)$ then $\rho F \in \mathcal{A}(H)$ and $\|\rho F\|_{\mathcal{A}} \leq \|F\|_{\mathcal{A}}$, and for each [real] $f \in \mathcal{A}(H)$ there exists [real] $F \in \mathcal{A}(G)$ such that $\rho F = f$ and $\|F\|_{\mathcal{A}} = \|f\|_{\mathcal{A}}$.

Proof. Let $F \in \mathcal{A}(G)$, then

$$\|\rho F\|_{\mathcal{A}} = \sup \left\{ \left\| \int_H F d\mu \right\| : \mu \in \mathcal{M}(H), \|\mu\|_{\infty} \leq 1 \right\}$$

(by Lemma 1)

$$= \sup \left\{ \left\| \int_G F d(\rho^\ast \mu) \right\| : \mu \in \mathcal{M}(H), \|\rho^\ast \mu\|_{\infty} \leq 1 \right\}$$

(by Lemma 3)

$$\leq \sup \left\{ \left\| \int_G F d\lambda \right\| : \lambda \in \mathcal{M}(G), \|\lambda\|_{\infty} \leq 1 \right\} = \|F\|_{\mathcal{A}}.$$
\[\|F\|_A \leq \sum_{i \in \mathbb{H}} \|F_i\|_1 = \sum_{i \in \mathbb{H}} d_i \|f_i\|_1 = \|f\|_A. \]

But \(\rho F = f \), so \(\|F\|_A \geq \|f\|_A \), thus \(\|F\|_A = \|f\|_A \). Further if \(f \) is real, then so is \(F \), because \(\alpha(\mathbb{H}) = \mathbb{H} \). Q.E.D.

Let \(G \) be the class of compact groups having infinite abelian subgroups, hence compact infinite abelian subgroups (by closure).

Theorem 2. If \(G \in G \) then only real-analytic functions operate in \(A(G) \), that is, if \(\psi \) is defined on a closed convex set \(E \) in the complex plane, and \(\psi \circ F \in A(G) \) whenever \(F \in A(G) \) and range \(F \subseteq E \) then \(\psi \) is real-analytic on \(E \).

Proof. Let \(H \) be an infinite compact abelian subgroup of \(G \). By Lemma 6.6.2, p. 143 (Rudin [8]), for \(n > 0 \),
\[
\sup \{ \|e^{it}\|_A : \text{real } f \in A(H), \|f\|_A \leq n \} = e^n.
\]

For any \(\epsilon > 0 \), there exists a real \(f \in A(H) \) such that \(\|f\|_A \leq n \), \(\|e^{it}\|_A > e^n - \epsilon \). By Theorem 1, there exists real \(F \in A(G) \) such that \(\rho F = f \) and \(\|F\|_A = \|f\|_A \leq n \). Then \(\rho(e^{it}) = e^{it} \), hence \(e^n \geq \|e^{it}\|_A \geq \|e^{it}\|_A > e^n - \epsilon \), therefore
\[
\sup \{ \|e^{it}\|_A : \text{real } F \in A(G), \|F\|_A \leq n \} = e^n.
\]

Now the proof of Helson, Kahane, Katznelson and Rudin [4] applies to \(A(G) \) to show that only real-analytic functions operate. Q.E.D.

4. Remarks. One may want to extend the theory of the Fourier algebra to homogeneous spaces, but there is a slight snag. Here is the situation: Let \(G \) be a compact group, \(H \) a closed subgroup, \(X = G/H \) the homogeneous space of right cosets of \(H \), then let \(A(G/H) = \{ f \in A(G) : f(x) = f(xh), \text{all } x \in G, h \in H \} \). \(A(G/H) \) can be interpreted as a Banach algebra of continuous functions on \(X \) with maximal ideal space \(\mathbb{H} \times X \). Now suppose that another group \(G \), also acts transitively on \(X \) and \(X \cong G_1/H_1 \). Is there a natural isomorphism between \(A(G/H) \) and \(A(G_1/H_1) \)? In general, the answer is no, as may be seen in the case of \(SO(4)/SO(3) \cong Sp(1) \), (the group of unit quaternions). In the case \(G_1 \subseteq G, H_1 = H \cap G_1 \), Theorem 1 shows that \(A(G/H) \subset A(G_1/H_1) \).

References

University of Virginia