PURE STATES AND APPROXIMATE IDENTITIES

JOHAN F. AARNES AND RICHARD V. KADISON

1. Introduction. In this note we show that each norm separable C^*-algebra has an increasing abelian approximate identity and that, if the algebra has an identity, each pure state is multiplicative on some maximal abelian subalgebra.

Let A be a C^*-algebra without an identity element. A net $\{u_i\}_{i \in I} \subseteq A$, where I is a directed index set, is called an approximate identity for A if $\|u_i\| \leq 1$ for all $i \in I$, and $\|u_i x - x\| \to 0$; $\|x u_i - x\| \to 0$ for all $x \in A$. We say that $\{u_i\}_{i \in I}$ is increasing if $u_i = 0$ and $i < j \Rightarrow u_i \leq u_j$ for all $i, j \in I$. With u_i selfadjoint, if one of the limits exists, so does the other. Each C^*-algebra has an increasing approximate identity [2, 1.7.2]. An approximate identity $\{u_i\}_{i \in I}$ is countable if I is countable. It is abelian if u_i and u_j commute for all $i, j \in I$.

An element $x \in A$ is said to be strictly positive if $\rho(x) > 0$ for each nonzero positive linear functional ρ on A. A strictly positive element is positive [2, 2.6.2].

We use the following notation: If M is a collection of vectors in a Hilbert space H, and \mathcal{F} is a family of bounded linear operators on H, then $[\mathcal{F}M]$ is the closed linear span of the set \{ $F\xi$: $F \in \mathcal{F}$, $\xi \in M$ \}.

2. Results.

Lemma 1. If $x \in A$ is strictly positive, and π is a nondegenerate representation of A on a Hilbert space H, then $[\pi(x)H] = H$.

Proof. Suppose $0 \neq \xi \notin [\pi(x)H]^\perp$. Since π is nondegenerate there is an element $a \in A$ such that $\pi(a)\xi \neq 0$. Let $\rho = \omega_\xi \circ \pi$, where ω_ξ is the positive linear functional $y \mapsto (\xi, y\xi)$. Then $\rho(a^* a) = (\pi(a^* a)\xi, \xi) = \|\pi(a)\xi\|^2 \neq 0$, so ρ is a positive, nonzero linear functional on A. But $\rho(x) = (\pi(x)\xi, \xi) = 0$ which contradicts the assumption that x is strictly positive. Hence $[\pi(x)H]^\perp = (0)$ and the lemma follows.

Theorem 1. A C^*-algebra A has a countable increasing abelian approximate identity if and only if A contains a strictly positive element.

Proof. If $x_0 \in A$ is strictly positive, we may take x_0 with norm equal to 1. Let $u_i = x_0^{1/i}$, and observe that $u_i \geq 0$, $\|u_i\| = 1$; $i \geq j \Rightarrow u_i \geq u_j$ and u_i and u_j commute for all $i, j \in I$. We want to show that for any

Received by the editors July 18, 1968.

1 Research supported in part by NSF GP-7683.

749
Let \(x \geq 0 \), and let \(y \) be the unique positive square root of \(x \). Let \(\hat{A} \) be the C*-algebra obtained by adjoining an identity \(e \) to \(A \). Then \(u_i \leq e \) for all \(i \), so that \(0 \leq yu_i y \leq yey = x \), and \(yu_i y \leq yu_j y \) if \(i \leq j \). Hence, if \(z_i = x - yu_i y \), \(\{ z_i \} \) becomes a monotone decreasing sequence of positive elements in \(A \). We claim that \(\| z_i \| \to 0 \). Let

\[S = \{ \rho \in A^* : \rho \geq 0, \| \rho \| \leq 1 \}. \]

\(S \) is compact in the \(w^* \)-topology [2, 2.5.5]. We may regard each \(z_i \) as a continuous function on \(S \) by the evaluation map. Since \(z_i \geq 0 \), \(\| z_i \| = \sup \{ \rho(z_i) : \rho \in S \} \) [2, 2.7.3]; so that it suffices to show that \(z_i \) converges uniformly to 0 on \(S \). As the sequence \(z_i \) is monotone, this will follow from Dini’s theorem once we know that \(\rho(z_i) \to 0 \) for each \(\rho \in S \).

Let \(\pi \) be a nondegenerate representation of \(A \) on a Hilbert space \(H \). \(\pi(u_i) = \pi(x_0^{1/2}) = \pi(x_0) u_i \), which by spectral theory converges strongly to the range projection of \(\pi(x_0) \). Since \(x_0 \) is strictly positive it follows by Lemma 1 that \(\pi(u_i) \to I \) strongly on \(H \), where \(I \) is the identity operator on \(H \).

Let \(\rho \neq 0 \) be an arbitrary element of \(S \) and \(\pi_\rho \) be the associated representation of \(A \) on the Hilbert space \(H_\rho \). Then \(\pi_\rho \) is nondegenerate with a cyclic vector \(\xi_\rho \) and

\[
\rho(z_i) = (\pi_\rho(z_i) \xi_\rho, \xi_\rho) \\
= ((\pi_\rho(x) - \pi_\rho(yu_i y)) \xi_\rho, \xi_\rho) \\
= (\pi_\rho(y) \xi_\rho - \pi_\rho(u_i) \pi_\rho(y) \xi_\rho, \pi_\rho(y) \xi_\rho)
\]

which converges to zero since \(\pi_\rho(u_i) \to I \) strongly. Hence \(\| z_i \| \to 0 \).

Working in \(\hat{A} \) (as Akemann does in [1]), let \(v_i \) be the positive square root of \(e - u_i \). Then

\[
\| yu_i y \| = \| yv_i y \| = \| y(e - u_i) y \| = \| x - yu_i y \| \to 0,
\]

and hence

\[
\| xu_i - x \| = \| y^* v_i ^* \| \leq \| y \| \cdot \| yv_i \| \cdot \| v_i \| \leq \| y \| \cdot \| yu_i \| \to 0.
\]

Thus \(\{ u_i \} \) is an approximate identity.

Conversely, suppose \(\{ u_i \} \) is an increasing abelian approximate identity, and let \(x = \sum_{n=1}^{\infty} 2^{-n} u_n \). If \(\rho \) is a nonzero positive linear functional on \(A \), we know that \(\rho(u_n) \to \| \rho \| \) [2, 2.1.5]. Hence \(\rho(u_n) > 0 \) for some \(n \), so \(\rho(x) = \sum_{n=1}^{\infty} 2^{-n} \rho(u_n) > 0 \). This shows that \(x \) is strictly positive, and the proof is complete.

Observe that if \(A \) is separable, then \(A \) has a strictly positive element. Indeed, if \(\{ y_n \} \) is dense in \(A \), then \(\{ x_n = y_n^* y_n \} \) is dense in \(A^+ = \{ x \in A : x \geq 0 \} \). Clearly \(x = \sum_{n=1}^{\infty} (2^n \| x_n \|)^{-1} x_n \) is strictly positive in \(A \).
Corollary 1. Any separable C*-algebra has a countable increasing abelian approximate identity.

Remark. Let X be a locally compact Hausdorff space, $A = C^0(X)$, the C*-algebra of all continuous complex functions on X vanishing at infinity. It is easily verified that A contains a function f which is everywhere positive if and only if X is σ-compact. Since each state on A may be represented by a Borel measure on X, we see that such a function f is a strictly positive element of A. Evidently X may be σ-compact without having a countable base for its topology, so A may have a strictly positive element without being separable. Needless to say, A will not always have strictly positive elements. An example is $C^0(R)$, when R is given the discrete topology.

A positive linear functional ρ on a C*-algebra A is a state if $\|\rho\| = 1$. If A has an identity e, this is equivalent to the condition $\rho(e) = 1$. We say ρ is pure if $\rho \neq 0$ and each positive, linear functional γ on A such that $0 \leq \gamma \leq \rho$, is of the form $\gamma = a\rho; 0 \leq a \leq 1$.

Theorem 2. Let A be a separable C*-algebra with identity. If ρ is a pure state on A, then there is a maximal abelian C*-subalgebra B of A such that $\rho|B$ is multiplicative.

Proof. Let N_ρ be $\{x \in A : \rho(x^*x) = 0\}$ and $A_0 = N_\rho \cap N_\rho^*$. A_0 is a C*-subalgebra of A and is therefore separable. Hence A_0 contains a strictly positive element x_0. Let B_0 be a maximal abelian C*-subalgebra of A_0 containing x_0 and B be $B_0 + C\cdot e$. Then B is an abelian C*-subalgebra of A. Since ρ vanishes on B_0, $\rho|B$ is multiplicative of norm 1. To show that B is a maximal abelian C*-subalgebra of A, it suffices to show that if a selfadjoint x in A commutes with B, then $x \in B$. Now, $x \in B$ if and only if $x - \rho(x)e \in B$; so we may assume that $\rho(x) = 0$. Let π_ρ be the irreducible representation of A associated with ρ on the Hilbert space H_ρ, with cyclic vector ξ_ρ [2, 2.5.4]. Let $H_0 = [\xi_\rho]^1$. We claim that $[\pi_\rho(A_0)H_0] = H_0$. Indeed, if $y \in A_0$ then $\|\pi_\rho(y)\xi_\rho\|^2 = (\pi_\rho(y^*y)\xi_\rho, \xi_\rho) = \rho(y^*y) = 0$; so that $(\pi_\rho(y)\pi_\rho(x)\xi_\rho, \xi_\rho) = 0$ for all x in A. On the other hand, let ξ in H_0 be arbitrary. By the transivity theorem [2, 2.8.3] there is a selfadjoint element $y \in A$ such that $\pi_\rho(y)\xi_\rho = 0$ and $\pi_\rho(y)\xi = \xi$. But then $y \in A_0$ and the claim follows. Hence $\pi_\rho|A_0$ is a nondegenerate representation on H_0. Let E be the orthogonal projection of H_ρ onto H_0. By Lemma 1, $[\pi_\rho(x_0)H_0] = H_0$. Now x_0 and x commute; so that E and $\pi_\rho(x)$ commute. Hence H_0 and $[\xi_\rho]$ are invariant under $\pi_\rho(x)$. This means that ξ_ρ is an eigenvector for $\pi_\rho(x)$; so $\pi_\rho(x)\xi_\rho = a\xi_\rho$ for some real a. Now $0 = \rho(x) = (\pi_\rho(x)\xi_\rho, \xi_\rho) = a(\xi_\rho, \xi_\rho) = a$. Hence $\pi_\rho(x)\xi_\rho = 0$ so $x \in A_0$. Since B_0 is
maximal abelian in A_0 it follows that $x\in B_0 \subseteq B$. The proof is complete.

REFERENCES

University of Oslo and
University of Pennsylvania