SOME REMARKS ON HYPERSPACES
RAYMOND Y. T. WONG

1. The purpose of this paper is to answer a question of R. Schori [3] and to provide simpler arguments for some generalizations of Schori's results.

If X is a metric space, the hyperspace of X, denoted 2^X, is the space of all nonvoid closed subsets of X with the usual Hausdorff metric. The n-fold ($n \geq 1$) symmetric product (Borsuk-Ulam [1]) of X, denoted $X(n)$, is the subspace of 2^X consisting of all elements with $\leq n$ points. Let I denote the closed unit interval, I^n the n-cube and I^∞ the Hilbert cube. Let $S(X)$ denote the subspace of 2^X consisting of all continua. In [3] R. Schori shows that for $\alpha = \infty, 1, 2, \cdots, I^\alpha(n)$ contains I^α as a factor; that is, $I^\alpha(n)$ is homeomorphic to $Y \times I^\alpha$ for some space Y. Let J^∞ denote another copy of the Hilbert cube with $J = [-1, 1]$ and let R be the equivalence relation on J^∞ defined by identifying each $x = (x_1, x_2, \cdots)$ with $-x = (-x_1, -x_2, \cdots)$.

Theorem I. J^∞/R is not homeomorphic to J^∞.

Thus we settle a question of R. Schori [3].

Proof. Let us suppose it were. Consider the natural quotient map $P: J^\infty \rightarrow J^\infty/R$. Evidently the restriction of $P: J^\infty - 0 \rightarrow J^\infty/R - P(0)$ is a two-fold covering. Since the Hilbert cube is homogeneous, it follows from the assumption that $J^\infty/R - P(0)$ is simply connected and therefore (well-known) does not admit a two-fold covering. This is a contradiction.

Question. Is J^∞/R an Absolute Retract?

The question is interesting because J^∞/R is clearly a retract of $J^\infty/R \times J^\infty$, which is homeomorphic to $J^\infty(2)$ by [3]. A negative answer would imply that $J^\infty(2)$ is not homeomorphic to J^∞.

Theorem II. Let m, n be positive integers. If $X = I^\infty(n)$, $2(I^\infty)$ or $S(I^\infty)$, then X contains I^m as a factor.

Remark. Schori's proof is restricted to symmetric products since it makes strong use of the following well-known characterization of $I^m(n)$. If n is a positive integer, then $I^m(n)$ is homeomorphic to I^m/R where R is the equivalent relation on I^m defined by (x_1, \cdots, x_n)

Received by the editors June 17, 1968.

1 Research supported in part by the National Research Council and the Office of Naval Research Grant ONR:432:LDB:lcd.

600
SOME REMARKS ON HYPERSPACES

$R(y_1, \cdots, y_n)$ iff $\{x_1, \cdots, x_n\} = \{y_1, \cdots, y_n\}$ (x_i and y_i are points in I^n). However, as such he is able to include the case when $m = \infty$ in his theorem. On the other hand, by working directly with the subspaces of 2^m we are able to give a much simplified proof and although we are not able to include $m = \infty$, we generalize in the direction of more general subspaces of 2^m which, as the nature of the technique, may include even more subclasses than those mentioned in Theorem II. In the case when $m = \infty$ we are able to prove the following partial generalization:

THEOREM III. If $X = I^n(n)$, $S(I^n)$ or 2^m, then for any positive integer k, X contains I^k as a factor.

Question. If $X = S(I^n)$ or 2^m, must X contain I^∞ as a factor?

2. The Cone Lemma. The cone over a space X, denoted $C(X)$, is the quotient space of $X \times I$ obtained by identifying $X \times 1$ as a point v, where v is called the vertex of $C(X)$. Inductively for $n > 1$, define $C^n(X) = C(C^{n-1}(X))$. Let \cong denote “homeomorphic to”.

LEMMA. (Schori). For $n > 1$, $C^n(X) \cong C(X) \times I^{n-1}$.

Outline of Proof. By induction it suffices to consider $n = 2$; that is, $C^2(X) \cong C(X) \times I$. For each $x \in X$, $C^2(x)$ can be realized as a triangle and thus we can deform $C^2(x)$ into $C(x) \times I$. If we do this uniformly for each x (detail in [3]), we obtain a homeomorphism from $C^2(X)$ onto $C(X) \times I$.

Proof of Theorem II. Let $\{v_i\}$ be the unit points in Euclidean space E^{m+1}; that is, v_i has 1 for its ith-coordinate and 0 otherwise. Let σ denote the m-simplex $v_1v_2 \cdots v_{m+1}$. Since $\sigma \cong I^m$, it is clear we can replace I^m by σ in Theorem II. For each i let σ_i be the $(m-1)$-dimensional face $v_1 \cdots v_{i-1}v_{i+1} \cdots v_{m+1}$. Now let X_0 be any space in Theorem II. For $i \geq 1$ let $X_i = \{x \in X_0 | x \cap \sigma_i \neq \emptyset \text{ for all } k \leq i\}$. Clearly $C(X_i+1) = \{t_\sigma i+1 + (1-t)x : t \in I, x \in X_{i+1}\} \subset X_i$. We contend that $\{t_\sigma i+1 + (1-t)x : t \in I, x \in X_{i+1}\} = X_i$. Suppose $x(\neq v_{i+1}) \in X_i$. Let $t = \min \pi i+1(x)$, where $\pi i+1$ is the usual projection map. It is routine to verify that $x' = x/(1-t) - t_\sigma i+1 \in X_{i+1}$ and thus $t_\sigma i+1 + (1-t)x' = x$. Inductively, we have $X_0 \cong C(X_1) \cong C(C(X_2)) \cdots \cong C^{m+1}(X_{m+1})$. The theorem now follows from the Cone Lemma.

Proof of Theorem III. Let s denote the infinite product of reals and let $T = \{(x_1, x_2, \cdots) \in I^\infty | 0 \leq x_i \leq 1 \text{ and } \sum_{i=1}^{\infty} x_i \leq 1\}$. Evidently T is closed in I^∞ and therefore compact. Thus T is a compact convex subset of the locally convex topological linear space s which admits a countable family of continuous linear forms that separate
points (namely, the family \(\{ \pi_i \} \) of projections) and thus by [2] \(T \) is homeomorphic to \(I^n \). Hence we may replace \(I^n \) by \(T \) in Theorem III. Now let \(X_0 \) be any space in Theorem III and let \(k \) be any positive integer. For each \(i \geq 1 \), let \(T_i = \{(x_1, x_2, \ldots) \in T | x_i = 0\} \) and \(X_i = \{x \in X_0 | x \cap T_k \neq \emptyset \text{ for all } k \leq i\} \). As in Theorem II, \(C(X_{i+1}) \approx X_i \). Inductively, \(X_0 \approx C(X_1) \cdots \approx C^{k+1}(X_{k+1}) \). The theorem now follows from the Cone Lemma.

References