SEMI-ISOMORPHISMS OF CERTAIN INFINITE
PERMUTATION GROUPS

W. R. SCOTT

Let X and Y be infinite cardinal numbers, $S(X)$ the full symmetric
group on a set of cardinal X, $A(X)$ the alternating group of finite even
permutations on the same set, and $S(X, Y)$ the subgroup of $S(X)$ of
all permutations moving fewer than Y elements.

A semi-automorphism of a group G is a permutation T of G such
that $(xyx)T = (xT)(yT)(xT)$ for all $x, y \in G$. Semi-isomorphism is
defined similarly. Dinkines [1] and Herstein and Ruchte [2] showed
that any semi-automorphism of $S(X, Y)$ or $A(X)$ was either the re-
striction T of an inner automorphism of $S(X)$, or was of the form
$T(-I)$ where $x(-I) = x^{-1}$ for all x. Theorem 11.4.6 of [3] states that
every automorphism of any group G such that $A(X) \subseteq G \subseteq S(X)$ is
the restriction of an inner automorphism of $S(X)$. In the present
paper, we prove the common generalization of these two theorems
whose statement is obvious. (See the corollary at the end.)

Lemma. If Q is a subset of $A(X)$ containing all 3-cycles and such that
$x, y \in Q$ imply $xyx \in Q$, then $Q = A(X)$.

Proof. If $x \in A(X)$, then $x = c_1c_2 \cdots c_n$, where the c_i are 3-cycles.
If $n = 1$, then $x \in Q$. Induct on n. Since

$$x = c_1 \cdots c_n = c_1^{-1}(c_1^{-1}(c_2 \cdots c_n)c_1)c_1$$

and the middle factor is the product of $n - 1$ 3-cycles $c_1^{-1}c_ic_1$, it follows
by induction that $x \in Q$.

Theorem. Let X be an infinite cardinal number, G and H subgroups
of $S(X)$ containing $A(X)$, and T a semi-isomorphism of G onto H. Then
either

1. T is induced by conjugation by an element of $S(X)$, or
2. T is the product of a mapping of type (1) mapping G onto H, and the mapping $-I$ of H onto H.

Proof. Since the center of H is 1, it follows that T preserves order
and powers [1, Lemma 1]. Let $S(S')$ be the subgroup generated by
all elements of order 2 in $G \langle H \rangle$. Since $A(X)$ is simple, S and S' each
contain $A(X)$. Call elements $x, y \in G$, S-conjugate iff $x = y^s$ for some

Received by the editors August 16, 1968.

1 This brief proof is due to Fletcher Gross.

711
$s \in S$. Define S'-conjugacy similarly. Then S- and S'-conjugacy are equivalence relations. Moreover, if x is S-conjugate to y, then $x = u_n \cdots u_1 y u_1 \cdots u_n$ with $o(u_i) = 2$, so that

$$xT = (u_nT) \cdots (u_1T) (yT) (u_1T) \cdots (u_nT),$$

and xT and yT are S'-conjugate. Since the inverse of a semi-isomorphism is also a semi-isomorphism, the converse is also true. Therefore T carries an S-conjugate class onto an S'-conjugate class.

Let M be the set of 3-cycles. Then

1. M is an S-conjugate class of G.
2. All elements of M have order 3.
3. $\max o(xyxy) = 5$ for $x, y \in M$.

By earlier remarks, MT satisfies these conditions with H instead of G and S' instead of S. If $x = (123)(456) \in MT$, then conjugation by an appropriate $s \in A(X) \subset S'$ gives $y = (132)(478) \in MT$. Then

$$xyx = (123)(46785)$$

contrary to (5). If $x = (123)(456)(789) \cdots \in MT$, then conjugation by some $s \in S'$ yields $y = (132)(457)(689) \cdots \in MT$. But then

$$xyx = (123)(48)(59) \cdots ,$$

contrary to (5). By (4), it follows that all elements of MT are 3-cycles. Hence, by (3), $MT = M$.

Let $Q = \{ x \in A(X) \mid xT \in A(X) \}$. If $x, y \in Q$, then $xyx \in Q$. By the lemma, $Q = A(X)$, that is $A(X)T \subset A(X)$. Using T^{-1} instead of T, we have $A(X)T = A(X)$. Thus $T^{-1}A(X)$ is a semi-automorphism. By [1] or [2], $T^{-1}A(X)$ is either an automorphism or an anti-automorphism. But all automorphisms of $A(X)$ are of the form T_z where T_z is conjugation by some element $z \in S(X)$ (see, for example, [3, Theorem 11.4.8]). If T is an anti-automorphism on $A(X)$, then $T(-I)$ is an automorphism, hence $T(-I) = T_z$ and $T = T_z(-I)$ on $A(X)$.

Let $U = TT_z^{-1}$ or $T(-I)T_z^{-1}$ in the above two cases. Then U is a semi-isomorphism of G which is the identity on $A(X)$. The theorem will follow if we can show that U is the identity on G.

Suppose that there is an $x \in G$ such that $xU \neq x$. We assert that x can be chosen so that it fixes at least 5 letters. If this is false, then choose x so that it fixes the maximum possible number of letters (at most 4). If x contains an n-cycle $n \geq 3$, we can assume that $x = (\cdots 123 \cdots) \cdots$, in which case $(123)x(123)$ fixes all letters fixed by x and the letter 3 in addition. In the other case, x is a product of disjoint 2-cycles, say $x = (12)(34) \cdots$; then $(123)x(123)$ again
fixes 3 and all letters fixed by x. Since for $y = (123)$, $(yxy) U = y(xU)y \neq yxy$, we have a contradiction in either case. Hence, as asserted, x can be chosen so that it fixes at least 5 letters.

Now let x be any element of G fixing at least 5 letters. We assert that xU fixes the same letters as x. Suppose, in fact, that x fixes 1, 2, 3, 4, and 5, but that xU moves 1. Then, changing notation if necessary, $1(xU) \neq 1, 2, 3, 4$. Now

$$xU = [(12)(34)x(12)(34)]U = (12)(34)(xU)(12)(34),$$

$$xU(12)(34) = (12)(34)(xU).$$

But the left side sends 1 into $1(xU)$, while the right sends it into 2(xU). This contradiction proves that xU fixes all letters fixed by x. Consideration of U^{-1} shows that xU fixes the same letters as x.

Let x fix at least 5 letters, and $xU \neq x$. For some letter i, $ix = j$, $i(xU) = k$, $k \neq j$. The preceding paragraph implies that $i \neq j$. Let $r \neq i$ or j. Now the element $(rij)x(rij)$ fixes r and all letters fixed by x, hence at least 5 letters altogether. However $(rij)(xU)(rij) = [(rij)x(rij)]U$ does not fix r. This contradicts the preceding paragraph. Thus the theorem is true.

Corollary. If $A(X) \subseteq G \subseteq S(X)$ and T is a semi-automorphism of G, then there is an element $z \in N_{S(X)}(G)$ such that either T is the automorphism T_z (induced by conjugation by z) or the anti-automorphism $T_z(-1)$.

Bibliography

University of Utah