SOME CRITERIA FOR NILPOTENCY IN GROUPS
AND LIE ALGEBRAS

EUGENE SCHENKMAN

We shall say that an automorphism \(\alpha \) is nilpotent or acts nilpotently on a group \(G \) if in the holomorph \(H = [G, \alpha] \) of \(G \) with \(\alpha \), \(\alpha \) is a bounded left Engel element, that is, \([H, k\alpha] = 1 \) for some natural number \(k \). Here \([H, k\alpha]\) means \([H, (k-1)\alpha]\) with \([H, 0\alpha]\) denoting \(H \).

Let \(G' \) denote the commutator subgroup \([G, G]\), and let \(\Phi(G) \) denote the Frattini subgroup of \(G \). If \(\alpha \) is an automorphism of a nilpotent group \(G \) such that the automorphism \(\alpha \) induced by \(\alpha \) on \(G/G' \) is nilpotent (or with certain restrictions on the exponent of \(G \) on \(G/\Phi(G) \)), then by a well-known theorem of Philip Hall (cf. [6, p. 202]), \(\alpha \) is nilpotent. Here we shall show that the same conclusion follows if we know that the restriction of \(\alpha \) to a suitable subgroup of a nilpotent group is nilpotent. We prove the following two theorems announced in [7].

Theorem 1. Let \(G \) be a nilpotent group, let \(\alpha \) be an automorphism of \(G \), let \(F \) be a subgroup of \(G \) stable under \(\alpha \) and such that \(\alpha \) is nilpotent on \(F \). If \(F \) contains its centralizer \(C_G(F) \), then \(\alpha \) is nilpotent on \(G \).

For the statement of Theorem 2 it will be convenient to say that a nilpotent group \(G \) is of height \(k \) if \(k \) is the least nonnegative integer so that for each prime \(p \) and each \(p \)-element \(g \) of \(G \), \(g^p \in G' \).

Theorem 2. Let \(G \) be a nilpotent group of height \(k \), let \(\alpha \) be an automorphism of \(G \), let \(F \) be a subgroup of \(G \) stable under \(\alpha \) and such that \(\alpha \) is nilpotent on \(F \). Suppose that \(F \) contains the elements of order 4 of \(C_G(F) \), the elements of order \(p \) of \(C_G(F) \) for all odd primes \(p \), and the torsion-free elements of \(C_G(F) \). Then \(\alpha \) is nilpotent on \(G \).

Theorem 2 includes as a special case a recent result of Blackburn (cf. [1]).

In view of the known results about Engel elements we have the following consequence.

Corollary 1. Let \(F \) be a nilpotent normal subgroup of a group \(G \) and suppose that \(G \) is either finite or else solvable with nilpotent Hirsch-Plotkin radical \(H \), and suppose further that either \(F \supseteq C_G(F) \) or that \(F \)
is as in Theorem 2. If for each \(x \in G \), the inner automorphism \(\alpha_x \) determined by \(x \) induces a nilpotent automorphism on \(F \), then \(G \) is nilpotent.

Since Theorem 1 is very closely related to a theorem of Thompson (cf. [3, p. 185]) we include the following generalization of the latter.

Theorem 3. A nilpotent group \(G \) of finite height has a characteristic subgroup \(C \) with the following properties:

(i) \(C/Z(C) \) has height at most one provided \(G \) is periodic.
(ii) \([G, C] \) is contained in the center \(Z(C) \) of \(C \) (and hence \(C \) has class at most two).
(iii) \(C_\delta(C) = Z(C) \).
(iv) Every nonnilpotent automorphism of \(G \) induces a nonnilpotent automorphism of \(C \).

We also develop similar ideas for Lie algebras as follows. We say that a derivation \(\delta \) is nilpotent or acts nilpotently on a Lie algebra \(L \) if in the holomorph \(H = L + \{ \delta \} \) of \(L \) with \(\delta \), \(\delta \) is an Engel element. Then we have for Lie algebras the following analogues to our results for groups:

Theorem 4. Let \(F \) be a subalgebra of a nilpotent Lie algebra \(L \) such that \(F \) contains its centralizer \(C_L(F) \). If \(\delta \) is a derivation of \(L \) which maps \(F \) onto \(F \) and is nilpotent on \(F \) then \(\delta \) is nilpotent on \(L \).

Corollary 2. Let \(F \) be an ideal of a finite-dimensional Lie algebra \(L \) such that \(F \) contains \(C_L(F) \). If for each \(x \) in \(L \) the inner derivation \(\delta_x \) determined by \(x \) induces a nilpotent derivation on \(F \), then \(L \) is nilpotent.

Theorem 5. A nilpotent Lie algebra \(L \) has a characteristic subalgebra \(C \) with the following properties:

(i) \([L, C] \) is contained in the center \(Z(C) \) of \(C \) and hence \(C \) has class at most two.
(ii) \(C_\delta(C) = Z(C) \).
(iii) Every nonnilpotent derivation of \(L \) induces a nonnilpotent derivation of \(C \).

Proofs. We note that easy induction arguments immediately give the following:

1. The holomorph of a nilpotent group with a nilpotent automorphism is nilpotent.
2. A nilpotent automorphism of a nilpotent group of finite exponent (of exponent \(p^k \)) has finite order (of order a power of \(p \)).
3. If \(G \) has a normal series \(G = G_0 \triangleright G_1 \triangleright \cdots \triangleright G_n = 1 \) and an automorphism \(\alpha \) so that for \(i = 1, 2, \ldots, n \), \(\alpha \) maps \(G_i \) onto \(G_i \) and
if \(\alpha \) is nilpotent on each factor group \(G_{i-1}/G_i \), then \(\alpha \) is nilpotent on \(G \).

Proof of Theorem 1. We consider the case first where \(G' \leq F \). Since \([F, kG] = 1\) and \([F, m\alpha] = 1\) for appropriate natural numbers \(k \) and \(m \), it follows that \(F \) has a normal series \(F = F_0 > F_1 > \cdots > F_n = 1 \) so that if \(H \) denotes the holomorph \([G](\alpha)\) then \([F_i, H] \leq F_{i+1}\) for \(i = 0, 1, \cdots, n - 1 \). Let \(C_i \) denote \(C_0(F_i) \). Then \(C_0 \leq C_1 \leq \cdots \leq C_n = G \) and \(C_0 \leq F \). If \(C_{r+1} \) is the least of the \(C_i \) not in \(F \) we shall show that \(\alpha \) is nilpotent on \(C_{r+1} \) as follows: \([F_r, C_{r+1}] \leq F_r \), so that \([F_r, C_{r+1}], m\alpha\) = 1. Then for \(c \in C_{r+1}, f \in F_r \),

\[
([f, c^{-1}], \alpha)^{\nu}([c, \alpha^{-1}], f)^{\nu}([\alpha, f^{-1}], c)^{\nu} = 1
\]

(cf. (*), p. 201 of [6]), and hence \([f, c^{-1}], \alpha] = ([f, c^{-1}], \alpha)\). It follows that \([[f, c^{-1}], \alpha], \alpha] = ([f, c^{-1}], \alpha) \) for each \(j > 1 \). Since \([F_r, C_{r+1}], m\alpha] = 1\) it follows that \([C_{r+1}, m\alpha]\) \leq C_r \leq F \) and \([C_{r+1}, 2m\alpha] = 1\). Hence \(\alpha \) is nilpotent on \(C_{r+1} \) and consequently on \(FC_{r+1} \). An induction then gives that \(\alpha \) is nilpotent on \(C_n = G \) and the statement of the theorem is proved in the case where \(G' \leq F \). Now let \(G^2 \) denote \(G' \) and for \(t > 2 \), let \(G^t \) denote \([G^{t-1}, G] \) so that \(G = G^1 \leq G^2 \leq \cdots \). In the general case suppose that \(G' \) is the least member of the lower central series not in \(F \). Then \(\alpha \) is nilpotent on \(FG' \) by what was shown above and an induction gives that \(\alpha \) is nilpotent on \(G \). This proves Theorem 1.

Proof of Theorem 2. Let \(G = G_0 > G_1 > \cdots > G_n = 1 \) be an invariant series of \(G \) which includes the members of the lower central series of \(G \) and so that each factor \(G_i/G_{i+1} \) has height at most 1. Let \(r \) be maximal so that \(G_{r+1} \leq F \) and assume inductively that the theorem is true for all \(s < r \). Now \(F \cap C_0(F) \) is central in \(C_0(F) \) and the hypotheses of the theorem hold for \(F \cap C_0(F) \) in \(C_0(F) \). If we can show that \(\alpha \) is nilpotent on \(C_0(F) \), then by (3) \(\alpha \) will be nilpotent on \(FC_0(F) \), and by Theorem 1, \(\alpha \) will be nilpotent on \(G \).

Accordingly we need only consider the case where \(F \) is central in \(G \). Then all the torsion free elements of \(G \) are in \(F \) and we let \(k \) be maximal so that \(F \) contains all the elements of order \(p^k \) of \(G \) for all \(p \) (\(k > 0 \) by hypothesis). Let \(c \) be a \(p \)-element of \(G \), for some \(p \); since \(\alpha \) is nilpotent on \(F \), a suitable \(p \)-th power \(\beta \) of \(\alpha \) is the identity on the Sylow \(p \)-subgroup \(F_p \) of \(F \) by (2). Then \([c, \beta]^{p^k} = (c^{-1}c^p)^{p^k} \) and since \([c^{-1}, \beta]^{p^k}\) is in \(G_r \), hence in \(F \) and therefore central,

\[
(c^{-1}c^p)^{p^k} = c^{-p}\beta^{p^k}[c^{-1}, \beta^{p^k}]
\]

(where \(C_{p^k, 2} \) is the binomial coefficient), which is \(c^{-p}\beta^{p^k} \) since

\[
[c^{-1}, \beta^{p^k}]^{C_{p^k, 2}} = [c^{-p}, \beta^{p^k}]^{C_{p^k, 1/p}} = 1
\]
(for \(k = 1 \) it is only necessary to consider odd \(p \)). Thus \([c, \beta]\) \(\alpha^k = [c^k, \beta] = 1 \), and hence \([c, \beta] \in F\). Since \(\beta \) is a \(p \)-th power of \(\alpha \) it follows that \(\alpha \) (modulo the centralizer of \(c \) in \((\alpha) \)) and \(c \) generates a \(p \)-subgroup whose order is bounded in terms of the class of nilpotency and height of \(G \) independent of the element \(c \). Thus \(\alpha \) is nilpotent on \(F_p \cap G_\tau \). Since this is true for each \(p \), \(\alpha \) is nilpotent on \(G_\tau \) and hence by (3) on \(F_{G_\tau} \). By the induction assumption \(\alpha \) is nilpotent on \(G \) and the theorem is proved.

Proof of Corollary 1. Suppose first that \(G \) is finite. An induction argument on order gives that all maximal subgroups of \(G \) containing \(F \) are nilpotent. Hence \(G/F \) is solvable and thus \(G \) is solvable. We now consider the case where \(G \) is solvable with nilpotent Hirsch-Plotkin radical \(H \) and consider the subgroups \(F \leq H \leq K \leq G \) where \(K \) is a normal subgroup of \(G \) with \(K/H \) abelian. Then for \(x \in K \), \(\alpha \) is nilpotent on \(H \) by the theorems and hence \(x \) is a left Engel element of \(G \). It follows from Theorem 4 of [4] that \(x \) is in \(H \) and therefore \(K \leq H \); since \(G \) is solvable it follows that \(G \leq H \) and hence that \(G \) is nilpotent, as was to be shown.

Proof of Theorem 3. Theorem 1 includes the implication that condition (iii) of Theorem 3 implies condition (iv). Accordingly we need only prove that conditions (i), (ii), and (iii) hold for \(G \). We let \(D \) be a maximal characteristic abelian subgroup of \(G \) and let its centralizer \(C_\alpha(D) \) be denoted by \(H \). We let \(K \) be the complete inverse image of the maximal subgroup of height one of the center of \(G/D \) when \(G \) is periodic, while for \(G \) not periodic \(K \) will be the complete inverse image of the center of \(G/D \) (so that \([G, K] \leq D \)). We then let \(C \) be \(H \cap K \) and \(Q \) be \(C_\alpha(C) \), noting that \(Q \leq H \) since \(D \leq C \). Since all the above subgroups are characteristic in \(G \), \(D(C \cap Q) \) is characteristic as well as abelian, so that from the maximality of \(D \) it follows that \(C \cap Q \leq D \) and therefore \(H \cap K \cap Q = K \cap Q \leq D \). Furthermore, since \(C \leq C_\alpha(D) \), it follows that \(D \) is in \(C \) and from the maximality of \(D \) that \(D \) is in fact the center of \(C \). Finally the fact that \(K \cap Q \leq D \) implies that \(Q \leq D \); for in the contrary case, modulo \(D \), \(Q \) would be a nontrivial normal subgroup which did not meet the maximal subgroup of height one of the center of \(G \) (modulo \(D \)). Thus conditions (i), (ii), and (iii) are satisfied for \(C \) and the proof of the theorem is complete. It is worthy of notice that in case \(C_\alpha(D) \leq D \), then \(D \) itself satisfies the conditions of the theorem in place of \(C \).

Proofs of Theorems 4 and 5. The proof of Theorem 4 is essentially the same as that of Theorem 1 except that the argument to replace the lines following (*) is less complicated, since the Jacobi identity is similar to but simpler than (*). For the proof of Theorem 5 we let \(D \) be a maximal characteristic subalgebra and let \(K \) be the
complete inverse image of the center of L/D and then proceed as in Theorem 3. It should be remarked here that in a similar fashion the arguments on p. 202 of [6] for groups can be recast directly to give the analogous results for Lie algebras (cf. [2]).

Proof of Corollary 2. L induces a nilpotent algebra of linear transformations on the vector space F/F' and hence by Engel's theorem (cf. [5] for instance) L/F is nilpotent. Thus L is solvable. By an induction argument FL' is nilpotent and hence by Theorem 4 every $x \in LF'$ is an Engel element of L. Then by Engel's theorem again, L is nilpotent.

References

Purdue University