ON THE ENTROPY OF CERTAIN CLASSES OF
SKEW-PRODUCT TRANSFORMATIONS

D. NEWTON

1. Introduction. For the theory of Lebesgue spaces, skew-product transformations and entropy see [5], [4] and [6]. Let X and Y be Lebesgue spaces with measures μ and ν and let $M = X \times Y$ be the direct product space with the direct product measure $\mu \times \nu$. Let S be an automorphism of the space X and let $\{T_x\}$ be a family of automorphisms of the space Y, define $U(x, y) = (Sx, T_xy)$. Under certain measurability conditions on the family $\{T_x\}$ U is an automorphism of the space M. U is called the skew-product with base S and fibre T_x. The entropy of such a skew-product has been calculated [1], [4], but the formulae given are not in general amenable to calculation.

We will consider two special types of skew-product:

1. Let S be an automorphism of X and let $k(x)$ be an integer valued function on X such that $k(x) > 0$ and $\int_X k(x) d\mu < \infty$. The first class of skew-products are those for which $T_x = S^{k(x)}$.

2. Let ψ_t be a measurable measure-preserving flow on Y and let $f(x)$ be a real-valued function on X such that $f(x) \geq \tau > 0$, for some constant τ, and $\int_X f(x) d\mu < \infty$. The second class of skew-products are those of the form $T_x = \psi_{f(x)}$.

In both these special cases we will show that $h(U) = h(S) + \int_X h(T_x) d\mu$. We note that the first class is not contained in the second since the automorphism T may not be embeddable in a flow.

2. Induced automorphisms and special flows. Let T be an automorphism of a Lebesgue space M with measure μ. If $X \subseteq M$ and $\bigcup_{n=0}^{\infty} T^n X = M$, then T induces in the Lebesgue space X, with measure $\mu_X(A) = \mu(A)(\mu(X))^{-1}$, $A \subseteq X$, the induced automorphism T' given by $T'x = T^{k(x)}x$ ($x \in X$) where $k(x)$ is the smallest positive integer l such that $T'^lx \in X$. Abramov [2] has shown that $h(T) = h(T')\mu(X)$.

Let us now consider the special flow built on an automorphism S of a Lebesgue space M under a function f. f is a real-valued function on M such that

(i) $f(x) \geq \tau > 0$ for $x \in M$,

(ii) $\int_M f(x) d\mu < \infty$.

Let V be the subset of $M \times R$, R is real line, defined by $(x, u) \in V$ if $0 \leq u < f(x)$. We define a group of automorphisms on V as follows; for $t < \tau$

Received by the editors November 21, 1967.

722
CERTAIN CLASSES OF SKEW-PRODUCT TRANSFORMATIONS 723

\[S_t(x, u) = (x, u + t) \text{ if } t < f(x) - u, \]
\[= (Sx, t + u - f(x)) \text{ if } t \geq f(x) - u, \]

for the remaining values of \(t \) the automorphisms \(\{ S_t \} \) can be defined so that \(\{ S_t \} \) is a group. For an explicit formula for \(S_t \) see [6]. Abramov [3] has shown that \(h(S_t) = \int h(S) f(x) d\mu \). We note that the entropy of an automorphism is always calculated with respect to a normalised measure space.

3. Main theorems.

Theorem 1. Let \(U \) on \(X \times Y \) with measure \(\mu \times \nu \) be defined by \(U(x, y) = (Sx, T^{k(x)}y) \) where \(k(x) > 0 \), \(k(x) \) is integer valued and \(\int x k(x) d\mu < \infty \). Then

\[h(U) = h(S) + h(T) \int x k(x) d\mu = h(S) + \int x h(T^{k(x)}) d\mu. \]

Proof. Let \(Z \) denote the set of positive integers \(Z = \{ 1, 2, \ldots \} \) and let \(\eta \) be the measure on \(Z \) which assigns measure 1 to each point. Let \(V \) be the subset of \(X \times Y \times Z \) defined by \((x, y, i) \in V \) if \(i \leq k(x) \). Note that \(V = V' \times Y \) where \(V' \) is the subset of \(X \times Z \) defined by \((x, i) \in V' \) if \(i \leq k(x) \). It is easily seen that

\[\mu \times \nu \times \eta(V) = \mu \times \eta(V') = \int x k(x) d\mu. \]

Let us consider \(V \) as a Lebesgue space with the measure normalised, i.e., if \(A \subseteq V \) then

\[\mu'(A) = \mu \times \nu \times \eta(A) \cdot \left(\int x k(x) d\mu \right)^{-1}. \]

Define an automorphism \(\phi \) on \(V \) by

\[\phi(x, y, i) = (x, Ty, i + 1) \text{ if } i < k(x), \]
\[= (Sx, Ty, 1) \text{ if } i = k(x). \]

Then \(\phi = T \times \psi \) where \(\psi \) is the automorphism on \(V' \) defined by

\[\psi(x, i) = (x, i + 1) \text{ if } i < k(x), \]
\[= (Sx, 1) \text{ if } i = k(x). \]

It is clear that \(U \) is the automorphism induced by \(\phi \) on the set \(X \times Y \times \{ 1 \} \). Thus we have

\[h(U) = h(\phi)(\mu'(X \times Y \times \{ 1 \}))^{-1} = \int x k(x) d\mu h(\phi). \]
Since $\phi = T \times \psi$ it follows that $h(\phi) = h(T) + h(\psi)$ and it remains only to calculate $h(\psi)$. It is clear that S is the automorphism induced by ψ on the set $X \times \{1\}$; thus $h(\psi) = h(S) \cdot (\int_X k(x) \, d\mu)^{-1}$. Finally

$$h(U) = h(S) + \int_X h(x) \, d\mu \cdot h(T)$$

$$= h(S) + \int_X h(T(x)) \, d\mu.$$

Theorem 2. Let U on $X \times Y$ with measure $\mu \times \nu$ be defined by $U(x, y) = (Sx, \psi_f(x)y)$ where $f(x)$ is a real-valued function on X, $\infty > f(x) \geq \tau > 0$ such that $\int_X f(x) \, d\mu < \infty$. Then

$$h(U) = h(S) + \int_X f(x) \, d\mu h(\psi_f) = h(S) + \int_X h(\psi_f(x)) \, d\mu.$$

Proof. Let R be the set of real numbers with the usual Lebesgue measure. Let A be the subset of $X \times Y \times R$ defined by $(x, y, u) \in A$ if $0 \leq u < f(x)$ we note that $A = A' \times Y$ where A' is the subset of $X \times R$ defined by $(x, u) \in A'$ if $0 \leq u < f(x)$. We consider the following flows defined on A, A and A' respectively, all are defined for $t < \tau$ and extended by group property,

$$\phi_t(x, y, u) = (x, \psi_t y, u + t) \quad \text{if } t < f(x) - u,$$

$$= (Sx, \psi_t y, u + t - f(x)) \quad \text{if } t \geq f(x) - u;$$

$$\phi'_t(x, y, u) = (x, y, u + t) \quad \text{if } t < f(x) - u,$$

$$= (Sx, \psi'_t(x)y, u + t - f(x)) \quad \text{if } t \geq f(x) - u;$$

$$\phi''_t(x, u) = (x, u + t) \quad \text{if } t < f(x) - u,$$

$$= (Sx, u + t - f(x)) \quad \text{if } t \geq f(x) - u.$$

It is easy to see that ϕ_t is a direct product of the flow ψ_t on Y with the flow ϕ''_t on A'. It is also clear that ϕ'_t and ϕ''_t are in the form of special flows built over the automorphisms U and S respectively and with the same function $f(x)$, regarded firstly as a function of two variables $f(x, y) = f(x)$ and secondly just as a function of one variable. Using Abramov's formula

$$h(\phi_t) = |t| h(U) \left(\int_X f(x) \, d\mu \right)^{-1},$$

$$h(\phi'_t) = |t| h(S) \left(\int_X f(x) \, d\mu \right)^{-1}.$$

Also $h(\phi_t) = h(\psi_t) + h(\phi''_t)$. We will exhibit an isomorphism U of A
to itself which has the property that $U^{-1}\phi_t U = \phi_t'$ for all t. Define
\[U(x, y, u) = (x, \psi_uy, u); \]
then, it is easily checked that U satisfies the required property. Thus
\[h(\phi_t) = h(\phi_t'). \]
Gathering together the formulae we have derived we obtain
\[h(\phi_t) = \left| t \right| h(U) \left(\int_x f(x)d\mu \right)^{-1} = h(\psi_t) + \left| t \right| h(S) \left(\int_x f(x)d\mu \right)^{-1} \]
or, in other words,
\[h(U) = h(S) + h(\psi_t) \left| t \right|^{-1} \int_x f(x)d\mu \]
\[= h(S) + h(\psi_t) \int_x f(x)d\mu, \]
since $h(\psi_t) = |t| h(\psi_t)$.

The proof of Theorem 1 depends on the restriction that $0 < k(x)$ and a natural question is to ask if the theorem is true when we let $k(x)$ take both positive and negative values. The following partial result was pointed out to us by W. Parry.

Theorem 3. Let $h(x)$ be an integer valued function on X with the following properties
i) \(\int_X h(x)d\mu < \infty. \)
ii) There exists an integer-valued function $k(x)$ and an integrable integer-valued function $l(x)$ such that $h(x) = k(x) - l(x) + l(Sx)$ and $0 < k(x) < \infty$.

Then, if $U(x, y) = (Sx, T^{k(x)}y)$, $h(U) = h(S) + h(T) \int x h(x)d\mu$.

We remark that it is possible to find functions $h(x)$ which take both positive and negative values and in such cases
\[h(T) \int x h(x)d\mu \neq \int x h(T^{k(x)})d\mu. \]

Proof. Let $\phi(x, y) = (x, T^{l(x)}y)$; then
\[\phi^{-1}U\phi(x, y) = (Sx, T^{-1}(Sx) T^{k(x)} T^{l(x)}y) \]
\[= (Sx, T^{k(x)}y). \]

By Theorem 1,
\[h(U) = h(\phi^{-1}U\phi) = h(S) + h(T) \int x k(x)d\mu. \]
But $h(x) = k(x) - l(x) + l(Sx)$; therefore, since S preserves the measure μ,

$$\int_x h(x) d\mu = \int_x k(x) d\mu.$$

Thus $h(U) = h(S) + h(T) \int_x h(x) d\mu$. A theorem of a similar type will also extend Theorem 2.

References

University of Sussex, Falmer, Brighton