ON THE ENTROPY OF CERTAIN CLASSES OF
SKEW-PRODUCT TRANSFORMATIONS

D. NEWTON

1. Introduction. For the theory of Lebesgue spaces, skew-product
transformations and entropy see [5], [4] and [6]. Let X and Y be
Lebesgue spaces with measures μ and ν and let \(M = X \times Y \) be the
direct product space with the direct product measure \(\mu \times \nu \). Let \(S \) be
an automorphism of the space \(X \) and let \(\{ T_x \} \) be a family of auto-
morphisms of the space \(Y \), define \(U(x, y) = (Sx, T_x y) \). Under certain
measurability conditions on the family \(\{ T_x \} \) \(U \) is an automorphism
of the space \(M \). \(U \) is called the skew-product with base \(S \) and fibre
\(T_x \). The entropy of such a skew-product has been calculated [1], [4],
but the formulae given are not in general amenable to calculation.

We will consider two special types of skew-product:

1. Let \(\psi \) be an automorphism of \(X \) and let \(k(x) \) be an integer
valued function on \(X \) such that \(k(x) > 0 \) and \(\int_X k(x) \, d\mu < \infty \). The first
class of skew-products are those for which \(T_x = \psi^{k(x)} \).

2. Let \(\psi_t \) be a measurable measure-preserving flow on \(Y \) and let
\(f(x) \) be a real-valued function on \(X \) such that \(f(x) \geq r > 0 \), for some
constant \(r \), and \(\int_X f(x) \, d\mu < \infty \). The second class of skew-products are
those of the form \(T_x = \psi_f(x) \).

In both these special cases we will show that \(h(U) = h(S) + \int_X h(T_x) \, d\mu \). We note that the first class is not contained in the
second since the automorphism \(T \) may not be embeddable in a flow.

2. Induced automorphisms and special flows. Let \(T \) be an auto-
morphism of a Lebesgue space \(M \) with measure \(\mu \). If \(X \subset M \) and
\(\bigcup_{n=0}^{\infty} T^n X = M \), then \(T \) induces in the Lebesgue space \(X \), with mea-
sure \(\mu_X(A) = \mu(A) (\mu(X))^{-1} \), \(A \subset X \), the induced automorphism \(T' \)
given by \(T'x = T^{k(x)} x \) (\(x \in X \)) where \(k(x) \) is the smallest positive inte-
ger \(l \) such that \(T^l x \in X \). Abramov [2] has shown that \(h(T) = h(T') \mu(X) \).

Let us now consider the special flow built on an automorphism \(S \)
of a Lebesgue space \(M \) under a function \(f \). \(f \) is a real-valued function
on \(M \) such that

(i) \(f(x) \geq r > 0 \) for \(x \in M \),

(ii) \(\int_M f(x) \, d\mu < \infty \).

Let \(V \) be the subset of \(M \times R \), \(R \) is real line, defined by \((x, u) \in V \)
if \(0 \leq u < f(x) \). We define a group of automorphisms on \(V \) as follows;
for \(t < r \)

Received by the editors November 21, 1967.

722
CERTAIN CLASSES OF SKEW-PRODUCT TRANSFORMATIONS 723

\[S_t(x, u) = (x, u + t) \quad \text{if } t < f(x) - u, \]

\[= (Sx, t + u - f(x)) \quad \text{if } t \geq f(x) - u, \]

for the remaining values of \(t \) the automorphisms \(\{ S_t \} \) can be defined so that \(\{ S_t \} \) is a group. For an explicit formula for \(S_t \) see [6]. Abramov [3] has shown that \(h(S_t) = \frac{1}{\mu} h(S) \left(\int_M f(x) d\mu \right)^{-1} \). We note that the entropy of an automorphism is always calculated with respect to a normalised measure space.

3. Main theorems.

Theorem 1. Let \(U \) on \(X \times Y \) with measure \(\mu \times \nu \) be defined by \(U(x, y) = (Sx, T^{k(x)}y) \) where \(\infty > k(x) > 0 \), \(k(x) \) is integer valued and \(\int_X k(x) d\mu < \infty \). Then

\[h(U) = h(S) + h(T) \int_X k(x) d\mu = h(S) + \int_X h(T^{k(x)}) d\mu. \]

Proof. Let \(Z \) denote the set of positive integers \(Z = \{1, 2, \ldots \} \) and let \(\eta \) be the measure on \(Z \) which assigns measure 1 to each point. Let \(V \) be the subset of \(X \times Y \times Z \) defined by \((x, y, i) \in V \) if \(i \leq k(x) \). Note that \(V = V' \times Y \) where \(V' \) is the subset of \(X \times Z \) defined by \((x, i) \in V' \) if \(i \leq k(x) \). It is easily seen that

\[\mu \times \nu \times \eta(V) = \mu \times \eta(V') = \int_X k(x) d\mu. \]

Let us consider \(V \) as a Lebesgue space with the measure normalised, i.e., if \(A \subseteq V \) then

\[\mu'(A) = \mu \times \nu \times \eta(A) \cdot \left(\int_X k(x) d\mu \right)^{-1}. \]

Define an automorphism \(\phi \) on \(V \) by

\[\phi(x, y, i) = (x, Ty, i + 1) \quad \text{if } i < k(x), \]

\[= (Sx, Ty, 1) \quad \text{if } i = k(x). \]

Then \(\phi = T \times \psi \) where \(\psi \) is the automorphism on \(V' \) defined by

\[\psi(x, i) = (x, i + 1) \quad \text{if } i < k(x), \]

\[= (Sx, 1) \quad \text{if } i = k(x). \]

It is clear that \(U \) is the automorphism induced by \(\phi \) on the set \(X \times Y \times \{1\} \). Thus we have

\[h(U) = h(\phi)(\mu'(X \times Y \times \{1\}))^{-1} = \int_X k(x) d\mu h(\phi). \]
Since \(\phi = T \times \psi \) it follows that \(h(\phi) = h(T) + h(\psi) \) and it remains only to calculate \(h(\psi) \). It is clear that \(S \) is the automorphism induced by \(\psi \) on the set \(X \times \{1\} \); thus \(h(\psi) = h(S) \cdot (\int_X k(x) \, d\mu)^{-1} \). Finally

\[
h(U) = h(S) + \int_X k(x) \, d\mu \cdot h(T)
= h(S) + \int_X h(T^{k(x)}) \, d\mu.
\]

Theorem 2. Let \(U \) on \(X \times Y \) with measure \(\mu \times \nu \) be defined by \(U(x, y) = (Sx, \psi_f(y)) \) where \(f(x) \) is a real-valued function on \(X \), \(\infty > f(x) \geq \tau > 0 \) such that \(\int X f(x) \, d\mu < \infty \). Then

\[
h(U) = h(S) + \int_X f(x) \, d\mu \cdot h(\psi) = h(S) + \int_X h(\psi_{f(x)}) \, d\mu.
\]

Proof. Let \(R \) be the set of real numbers with the usual Lebesgue measure. Let \(A \) be the subset of \(X \times Y \times R \) defined by \((x, y, u) \in A \) if \(0 \leq u < f(x) \) we note that \(A = A' \times Y \) where \(A' \) is the subset of \(X \times R \) defined by \((x, u) \in A' \) if \(0 \leq u < f(x) \). We consider the following flows defined on \(A \), \(A' \) and \(A' \) respectively, all are defined for \(t < \tau \) and extended by group property,

\[
\phi_t(x, y, u) = (x, \psi_y, u + t) \quad \text{if } t < f(x) - u,
= (Sx, \psi_y, u + t - f(x)) \quad \text{if } t \geq f(x) - u;
\]

\[
\phi_t'(x, y, u) = (x, y, u + t) \quad \text{if } t < f(x) - u,
= (Sx, \psi_{f(y)}y, u + t - f(x)) \quad \text{if } t \geq f(x) - u;
\]

\[
\phi_t''(x, u) = (x, u + t) \quad \text{if } t < f(x) - u,
= (Sx, u + t - f(x)) \quad \text{if } t \geq f(x) - u.
\]

It is easy to see that \(\phi_t \) is a direct product of the flow \(\psi \), on \(Y \) with the flow \(\phi_t'' \) on \(A' \). It is also clear that \(\phi_t' \) and \(\phi_t'' \) are in the form of special flows built over the automorphisms \(U \) and \(S \) respectively and with the same function \(f(x) \), regarded firstly as a function of two variables \(f(x, y) = f(x) \) and secondly just as a function of one variable. Using Abramov's formula

\[
h(\phi_t') = \left| t \right| h(U) \left(\int_X f(x) \, d\mu \right)^{-1},
\]

\[
h(\phi_t'') = \left| t \right| h(S) \left(\int_X f(x) \, d\mu \right)^{-1}.
\]

Also \(h(\phi_t) = h(\psi_t) + h(\phi_t'') \). We will exhibit an isomorphism \(U \) of \(A \)
to itself which has the property that $U^{-1}\phi_1 U = \phi'_1$ for all t. Define

$$U(x, y, u) = (x, \psi y, u);$$

then, it is easily checked that U satisfies the required property. Thus $h(\phi_1) = h(\phi'_1)$. Gathering together the formulae we have derived we obtain

$$h(\phi_1) = |t| h(U) \left(\int_x f(x) d\mu \right)^{-1} = h(\psi_1) + |t| h(S) \left(\int_x f(x) d\mu \right)^{-1}$$

or, in other words,

$$h(U) = h(S) + h(\psi_1) |t|^{-1} \int_x f(x) d\mu$$

$$= h(S) + h(\psi_1) \int_x f(x) d\mu,$$

since $h(\psi_1) = |t| h(\psi_1)$.

The proof of Theorem 1 depends on the restriction that $0 < k(x)$ and a natural question is to ask if the theorem is true when we let $k(x)$ take both positive and negative values. The following partial result was pointed out to us by W. Parry.

Theorem 3. Let $h(x)$ be an integer valued function on X with the following properties

(i) $\int_X h(x) d\mu < \infty$.

(ii) There exists an integer-valued function $k(x)$ and an integrable integer-valued function $l(x)$ such that $h(x) = k(x) - l(x) + l(Sx)$ and $0 < k(x) < \infty$.

Then, if $U(x, y) = (Sx, T^{k(x)}y)$, $h(U) = h(S) + h(T) \int_X h(x) d\mu$.

We remark that it is possible to find functions $h(x)$ which take both positive and negative values and in such cases

$$h(T) \int_X h(x) d\mu \neq \int_X h(T^{k(x)}) d\mu.$$

Proof. Let $\phi(x, y) = (x, T^{l(x)}y)$; then

$$\phi^{-1}U\phi(x, y) = (Sx, T^{-l(Sx)}T^{k(x)}y)$$

$$= (Sx, T^{k(x)}y).$$

By Theorem 1,

$$h(U) = h(\phi^{-1}U\phi) = h(S) + h(T) \int_X k(x) d\mu.$$
But \(h(x) = k(x) - l(x) + l(Sx) \); therefore, since \(S \) preserves the measure \(\mu \),

\[
\int_X h(x) d\mu = \int_X k(x) d\mu.
\]

Thus \(h(U) = h(S) + h(T) \int_X h(x) d\mu \). A theorem of a similar type will also extend Theorem 2.

REFERENCES

University of Sussex, Falmer, Brighton