AMPLE VECTOR BUNDLES ON ALGEBRAIC SURFACES

STEVEN L. KLEIMAN

The positivity of the Chern classes c_i of an ample vector bundle on an algebraic surface is studied. Notably the inequality $0 < c_2 < c_1^2$ is established. This inequality was conjectured by Hartshorne [5] and Griffiths [1] (for compact, complex manifolds).

Let X be a scheme of finite type over an algebraically closed field, E a vector bundle on X (i.e., a locally free sheaf of constant, finite rank), and $S^n(E)$ the nth symmetric power of E.

Definition (Hartshorne [5]) 1. The bundle E is ample if for every coherent sheaf F on X, there is an integer $N > 0$, such that for every $n \geq N$, the sheaf $F \otimes S^n(E)$ is generated by its global sections.

Proposition (Hartshorne [5]) 2. Consider the following conditions:

(i) The bundle E is ample.

(ii) Let $P = \mathbb{P}(E)$ be the associated projective bundle and $L = \mathcal{O}_P(1)$ the tautological line bundle. Then L is ample on P.

(iii) For every coherent sheaf F on X, there exists an integer $N > 0$, such that for $n = N$ and $q \geq 1$

$$H^0(X, F \otimes S^n(E)) = 0.$$

Then (i) and (ii) are equivalent and they are implied by (iii). If further, X is complete, then (i), (ii) and (iii) are all equivalent.

Theorem 3. Let X be an irreducible, nonsingular surface which is projective over an algebraically closed field, and let $A(X)$ be the Chow \mathbb{R}-algebra of cycles modulo numerical equivalence. Let E be a vector bundle of rank $r \geq 2$ on X, and let $c_1, c_2 \in A(X)$ be the Chern classes of E. Assume E is ample. Then, $c_2 > 0$ and $c_1^2 - c_2 > 0$.

Proof. Since E is ample on X, then $\mathcal{O}_P(1)$ is ample on $P = \mathbb{P}(E)$. Hence, by [EGA II, 4.4.1, 4.4.2 and 4.4.10], there exist an integer $n \geq 2$ and a projective embedding, $j: P \to Y = \mathbb{P}^r$ such that $\mathcal{O}_P(n) = j^*\mathcal{O}_Y(1)$. For this embedding, let S be the Chow variety parametrizing the 2-dimensional sections of P by linear spaces and T the subvariety of S corresponding to those sections which meet a given fiber of $P \to X$ in infinitely many points. As $n \geq 2$, the codimension of T in S is at least 3.

Received by the editors November 20, 1967.

1 This research was in part supported by the National Science Foundation under Grant NSF GP-5177.
Let H be a general 2-dimensional linear section of P. By the principal of counting constants, the map $H \rightarrow X$ has finite fibers; so, it is finite by [EGA III, 4.4.2]. Further, H is irreducible and nonsingular by Bertini's theorems [EGA V].

Let l be the class of $O_P(1)$ in the Chow algebra $A(P)$. By [2] or [3.1], $A(P)$ is generated over $A(X)$ by l modulo the relation,

$$l^r - c_1l^{r-1} + c_2l^{r-2} = 0. \tag{3.1}$$

Let $a \in A^1(X)$. Then, $(l - c_1) \cdot l^{r-1} \cdot a = -c_2 \cdot a \cdot l^{r-2} = 0$. Let $h \in A(P)$ be the class of H; then, $h = (nl)^{r-1}$. Therefore,

$$(l - c_1) \cdot a \cdot h = 0. \tag{3.2}$$

Let $i: H \rightarrow P$ be the inclusion map and i_*, i^* the maps induced on the Chow algebras. Then, $i_*i^*b = b \cdot h$ for $b \in A(P)$. In view of (3.2), it follows that for any $a \in A^1(X)$,

$$i^*(l - c_1) \cdot a = 0. \tag{3.3}$$

The Lefschetz hyperplane theorem [3.2, XIII, 4.6 (iii)\Rightarrow(vi)] implies that $i^*(l - c_1) \neq 0$ because $(l - c_1) \neq 0$. Let $a \in A^1(X)$ be the class of an ample line bundle. Since H is finite over X, then $a \cdot 1_H \in A^1(H)$ is the class of an ample line bundle by [EGA II, 5.1.12]. In view of (3.3), the Hodge index theorem [3.2, XIII, 7.1] asserts that $0 > i^*(l - c_1)^2$; thence, by (3.1) and (3.3) with $a = c_1$, it follows that $0 > -c_2 \cdot 1_H$.

Similarly, since i^*l is the class of an ample line bundle on H, then $0 < i^*l^2$; thence, by (3.1) and (3.2) with $a = c_1$, it follows that $0 < (c_2^2 - c_2c_1) \cdot 1_H$.

Remark 4. With the more general theory of Chern classes developed in [3.1], the same reasoning establishes that $c_2 > 0$ and $c_2^2 - c_2 > 0$ for an ample bundle E on an arbitrary surface X. Consequently, on a projective algebraic scheme Y of arbitrary dimension, an ample bundle E has classes c_2 and $c_2^2 - c_2$ which have positive intersection number with every surface X on Y.

Example 5. Under the conditions of Theorem 3, the inequality $c_2^2 - c_2 > 0$ is best possible in the following sense. There exists a sequence of ample, rank 2 bundles E_n on X, such that for all $e > 0$, $(c_2^2 - (1+e)c_2(E_n))$ equals $-en^2d + \cdots$ with $d = \text{deg}(X)$, so it tends to $-\infty$ as $n \rightarrow \infty$.

To construct E_n, fix a surjection $\alpha_n: O_X(1) \rightarrow O_X(n)$. Let F_n be the

2 This line is due to Hartshorne who commented in private on the proof that $c_2 > 0$.
dual of the kernel of α_n and $E_n = F_n(1)$. Then E_n is a rank 2 bundle and there is an exact sequence

$$0 \to O_X(1 - n) \to O_X(1) \oplus ^E \to E_n \to 0.$$

Hence, $c_1(E_n) = (n + 2)d$ and $c_2(E_n) = (n^2 + n + 1)d$. Finally, since E_n is a quotient of a direct sum of ample line bundles, E_n is ample [5, (2.2)].

In characteristic $p > 0$, there are two new notions extending the notion of ampleness for line bundles: Let $f: X \to X$ be the Frobenius (pth-power) endomorphism and f^n the nth iterate of f.

Definition (Hartshorne [5]) 6. (i) The bundle E is p-ample if for every coherent sheaf F, there is an integer $N > 0$, such that for every $n \geq N$, the sheaf $F \otimes f^n_* E$ is generated by its global sections.

(ii) The bundle E is cohomologically p-ample if for every coherent sheaf F on X, there is an integer $N > 0$, such that for $n \geq N$ and $q \geq 1$, $H^q(X, F \otimes f^n_* E) = 0$.

Remark 7. (i) Assume X is quasi-projective. Then any coherent sheaf F is a quotient of a sheaf of the form $O_X(-m) \otimes^M$ for $m, M > 0$. It follows that for the Definitions 6 (as well as for the analogous formulations of ampleness) it suffices to verify the condition on sheaves of the form $F = O_X(-m)$ for $m > 0$.

(ii) Hartshorne [5, (6.3)] proves that p-ample bundles are ample. He conjectures the converse, and proves it for line bundles and for curves [5, (7.3)].

Example 8. A p-ample bundle on a complete scheme need not be cohomologically p-ample. In fact, the rank 2 bundles E_n constructed in (5) are p-ample being quotients of direct sums of p-ample bundles [5, (6.4)]; however, for $n \geq 2$, (although quotients of cohomologically p-ample bundles) they are not cohomologically p-ample because for $m \gg 0$, $H^1(X, f^n_* E_n)$ equals $H^2(X, O_X(-m(n-1)))$, which is > 0 by [6, p. 944].

Proposition 9. Suppose X is quasi-projective and E is cohomologically p-ample. Then E is p-ample.

Proof. In view of (7)(i), fix an integer $m > 0$ and let $G_n = (f^n_* E)(-m)$.

Let $x \in X$ be a closed point. Then there is an N such that the stalk $(G_N)_x$ is generated by global sections. Indeed, it suffices to show that the map $H^0(X, G_N) \to H^0(X, G_N \otimes k(x))$ is surjective. However, by hypothesis, there is an N such that $H^1(X, I_x \otimes G_N) = 0$ where I_x is the ideal defining $\{x\}$. There is, therefore, a neighborhood U of x in which G_N is generated by global sections.
Let \(n = N + t \), with \(t \geq 0 \). Then, \((f^*_n E)(-mp') = f^*_n G_N\) is generated in \(U \) by global sections. However, for any sheaf \(G \) and \(r \geq 0 \), \(G \) is a quotient of \(G(-r)^{\otimes s} \) for suitable \(s \). Thus, \(G_n \) is generated in \(U \) by global sections. By quasi-compactness, it follows that \(E \) is \(p \)-ample.

Lemma 10. Suppose \(X \) is integral, quasi-projective and of dimension \(r \) and \(E \) is \(p \)-ample. Then for some \(a > 0 \),

\[
h^0(X, f^*_n E) \geq ap^n + \cdots .
\]

Proof. Take \(N \) such that \((f^*_n E)(-1)\) is generated by global sections. It follows that there is a map \(\beta : O_X(1) \to f^*_n E \) which is a split-injection on an open set. Let \(n = N + t \), with \(t \geq 0 \). Then, \(O_X \) being torsion free, \(f^*_n \beta : O_X(p^t) \to f^*_n E \) is an injection. Thus, \(h^0(X, f^*_n E) \geq h^0(X, O_X(p^t)) \); whence the conclusion.

Theorem (Hironaka) 11. Let \(X \) be an integral (nonsingular) surface which is projective over an algebraically closed field of characteristic \(p > 0 \), \(E \) a cohomologically \(p \)-ample bundle on \(X \), and \(c_1, c_2 \) the Chern classes of \(E \) modulo numerical equivalence. Then, \(c_1^2 - 2c_2 > 0 \).

Proof. For any bundle \(E \) on \(X \), the Riemann-Roch theorem implies that \(\chi(f^*_n E) = ((c_1^2 - 2c_2)/2!)p^{2n} + \cdots \). Suppose \(E \) is cohomologically \(p \)-ample. Then, in view of (9) and (10), \(E \) is \(p \)-ample and \(c_1^2 - 2c_2 > 0 \).

References

3.1. Exposes of Berthelot.
3.2. Expose of Kleiman.

Columbia University

\(^1\) This result was in essence contained in a private communication from Hironaka.