ON CENTRALIZERS OF INVOLUTIONS

MARCEL HERZOG

1. Introduction. The main purpose of this paper is to establish sufficient conditions for a group of even order to contain a normal elementary Abelian 2-subgroup of order at most 4 (Theorem 1). As a consequence it is shown that PSL(2, 5) is the only simple group which contains an involution x with the following property: the Sylow 2-subgroup of the centralizer C of x in G is a noncyclic group of order 4 which is normal in C (Theorem 3).

Several corollaries are derived from Theorem 1. In particular, a direct proof is given of the fact that PSL(2, 5) is the only group which has no normal 2-complement, no normal elementary Abelian 2-subgroups of order less than 8 and which contains an involution with an elementary Abelian centralizer of order 4 (Theorem 2).

If G is a group, $x \in G$ and T is a subset of G, $C_G(x)$, $C_G(x)$, $I(T)$, $o(T)$, $o(x)$, $\langle T \rangle$, T^*, $Z(G)$ and $K(G)$ denote respectively: the centralizer of x in G, the conjugate class of x in G, the set of involutions in T, the number of elements in T, the order of x, the group generated by T, $T - \{1\}$, the center of G and the largest normal subgroup of G of odd order. If P is a p-group then $\Omega_1(P)$ is the subgroup of P generated by elements of P of order p.

From now on G will be a group of even order, x a fixed involution of G, $K = K(G)$, $C = C_G(x)$, $I = I(C_G(x))$, $C_l(x) = C_G(x)$, and S a fixed Sylow 2-subgroup of G containing x such that $S_0 = S \cap C = $ Sylow 2-subgroup of C. We are ready to state the results.

Theorem 1. Suppose that there exists $y \in I - C_G(x)$ such that

\[(*) \quad C_G(u) \cap C_G(y) \subseteq C_G(y)\]

for all $u \in I$. Then $\langle C_G(y) \rangle$ is a proper elementary Abelian normal 2-subgroup of G.

If, in addition, $I \cap \langle C_G(y) \rangle = \{y\}$, then $o(\langle C_G(y) \rangle) \leq 4$.

Corollary 1. Suppose that the following conditions hold:

(a) $I = I(C_G(u))$ for all $u \in C_G(x) \cap I$;

(b) $I(C_G(y)) = I(C_G(z))$ for all $y, z \in I - C_G(x)$. Then one of the following statements holds:

(i) G has one class of involutions and $\langle I \rangle$ is an elementary Abelian normal 2-subgroup of C.

Received by the editors April 19, 1968 and, in revised form, June 17, 1968.

170
(ii) G has at least two classes of involutions and it contains a proper elementary Abelian normal 2-subgroup.

Corollary 2. Suppose that $o(I) \leq 3$. Then one of the following statements holds.

(i) $S_0 = S$, x is the only involution in S and $(x)K$ is a normal subgroup of G.

(ii) $S_0 = S$, S contains exactly 3 involutions and $(x)K$ is a proper normal subgroup of G.

(iii) $S_0 = S$, G has one conjugate class of involutions.

(iv) G has at least 2 classes of involutions and it contains a normal elementary Abelian subgroup of order at most 4.

Corollary 2 immediately yields

Corollary 3. Suppose that $o(I)^3$ and G is simple. Then $S = S_0$ and G has only one conjugate class of involutions.

In case that C is elementary Abelian of order 4 we get the following

Theorem 2. Suppose that $C = \{1, x, y, xy\}$ is elementary Abelian and G has neither a normal 2-complement nor a normal elementary Abelian 2-subgroup of order less than 8. Then $G \cong PSL(2, 5)$.

The following corollary is an easy consequence of Theorem 2, the results of Suzuki in [6] and the results of Feit and Thompson in [2].

Corollary 4. Let G be a finite noncyclic simple group containing an element w such that $o(C_0(w)) \leq 4$. Then G is isomorphic to one of the following groups: $PSL(2, 5)$, $PSL(2, 7)$, A_6 and A_7.

Our final theorem requires the deep results of Gorenstein and Walter [5] with respect to groups with a dihedral Sylow subgroup of order 4.

Theorem 3. Suppose that $S_0 = \{1, x, y, xy\}$ is elementary Abelian, S_0 is normal in C and G is simple. Then $G \cong PSL(2, 5)$.

The proof of Theorem 1 utilizes the following lemma, which is of independent interest.

Lemma. Let U be a subgroup of the group H and let w be an involution of H which normalizes U leaving fixed exactly two elements of U, 1 and y. Let V be a normal, w-invariant noncyclic elementary Abelian subgroup of U containing y. Then V is a Sylow 2-subgroup of U, $o(V) = 4$, and U/V is Abelian.
2. Proof of the Lemma, Theorem 1 and Corollary 1. We begin with the proof of the Lemma. Obviously \(y \) is an involution. First assume that \(o(V) = 4, V = \{1, y, z, yz\} \); then \(z^w = yz \). Suppose that \(U/V \) is not an Abelian group of odd order. Then \(w \) fixes an element of \((U/V)^t \), say \(uV \). Thus one of the following holds:

\[
\begin{align*}
w^w &= uy & \text{and} & \quad u &= u^{w^2} = u \\
&= uz & & \quad = uy \\
&= uyz & & \quad = uy.
\end{align*}
\]

Hence we must have \(u^w = uy \); but then \((uz)^w = (uy)(yz) = uz \) a contradiction. Thus \(U/V \) is an Abelian group of odd order. If \(o(V) > 4 \), then \(w \) fixes an element of \((V/(y))^t \), say \(z(y) \), and \(V_0 = \langle z, y \rangle \) is a normal, \(w \)-invariant, elementary Abelian subgroup of \(V \) containing \(y, o(V_0) = 4 \), and by the first part \(V = V_0 \), a contradiction. The proof of the Lemma is complete.

To prove Theorem 1, suppose first that \(Cl_\sigma(y) \nsubseteq C_\sigma(y) \) and let \(t \in Cl_\sigma(y) - C_\sigma(y) \). By a result of Brauer and Fowler [1, p. 572], there exists \(w \in I(G) \) such that \(w \in I(C_\sigma(x)) \cap C_\sigma(t) \subseteq I \). Hence by (*) \(t \in C_\sigma(w) \cap Cl_\sigma(y) \subseteq C_\sigma(y) \) a contradiction. It follows that \(Cl_\sigma(y) \subseteq C_\sigma(y) \) and \(\langle Cl_\sigma(y) \rangle = H \) is a normal subgroup of \(G \) contained in \(C_\sigma(y) \). If \(C_\sigma(y) = G \), then \(H = \langle y \rangle \neq G \) and the theorem follows. If \(C_\sigma(y) \neq G \), then \(H \) is a proper normal subgroup of \(G \) and obviously \(y \in \Omega_2(P) \triangleleft G \) where \(P \) is the Sylow 2-subgroup of \(Z(H) \). Hence \(Cl_\sigma(y) \subseteq \Omega_2(P) \) and \(H \) is elementary Abelian. Finally suppose that \(o(H) \geq 8 \) and \(I \cap H = \{y\} \). Then \(x \) leaves only \(y \) and 1 fixed in \(H \) and by the Lemma \(o(H) = 4 \), a contradiction. Thus \(o(H) \leq 4 \) and the proof of Theorem 1 is complete.

It remains to prove Corollary 1. If \(I \subseteq Cl(x) \), then each element of \(I \) belongs to the center of some Sylow 2-subgroup of \(G \) and therefore \(G \) has one class of involutions. By (a), \(\langle I \rangle \) is an elementary Abelian normal 2-subgroup of \(C \) and (i) holds. Suppose finally that \(I \nsubseteq Cl(x) \) and let \(y \in I - Cl(x) \). It follows from (b) that the elements of \(I - Cl(x) \) commute with each other. Thus for all \(u \in I \cap Cl(x) \),

\[
C_\sigma(u) \cap Cl_\sigma(y) = I \cap Cl_\sigma(y) \subseteq C_\sigma(y),
\]

and for all \(u \in I - Cl(x) \),

\[
C_\sigma(u) \cap Cl_\sigma(y) = (C_\sigma(y)) \cap Cl_\sigma(y) \subseteq C_\sigma(y).
\]

It follows then by Theorem 1 that \(G \) has a proper normal elementary Abelian 2-subgroup.
3. Proof of Theorem 2 and Corollaries 2 and 4. We begin with Corollary 2. If \(o(I) = 1 \), then \(S_0 = S \), \(x \) is the only involution in \(S \) and by [3], \((x)K \) is a normal subgroup of \(G \), as described in (i). If \(o(I) \neq 2 \), let \(o(I) = 3 \), \(I = \{ x, y, xy \} \). If no element of \(I \) is conjugate to \(x \) in \(G \), then \(N_S(S_0) = S_0 \), \(S = S_0 \), and by [3] \((x)K \not\subset G \). Since \(o(I) = 3 \), \((x)K \not\subset G \) and (ii) holds. If all the elements of \(I \) are conjugate in \(G \), then again \(S_0 = S \) and (iii) holds. Suppose finally that \(x \) is conjugate to \(xy \) in \(G \), but not to \(y \). Then \(I(C_o(xy)) = I \) and by Corollary 1, \((C_l(y)) \) is a normal elementary Abelian 2-subgroup of \(G \). Hence, as either \((C_l(y)) = \langle y \rangle \) or \(C_l(y) \) contains an element which does not commute with \(x \), \(I \cap (C_l(y)) = \{ y \} \) and by Theorem 1, \(o((C_l(y))) \leq 4 \), so that (iv) holds. This completes the proof of Corollary 2.

We continue with Theorem 2. If \(C = S \), then by Lemma 15.2.4 of [4], \(G \) has only one class of involutions and \(N = N_o(C) \cong PSL(2, 3) \). Thus \(C \) contains the centralizer of each of its nonunit elements and by Theorem 9.3.2 in [4], due to Suzuki, \(G \) is a Zassenhaus group of degree 5 with \(N \) the subgroup fixing a letter. Thus \(N \) is a Frobenius group with complement of order \(e = 3 \) and kernel of order \(n = 4 \). Since \(e \) is odd and \(e = n - 1 \), it follows from Theorems 13.3.5 and 13.1.1 in [4], due to Zassenhaus, that \(G \cong PSL(2, 4) \cong PSL(2, 5) \). Next assume that \(C \not\subset S \) and let \(y \in C \cap Z(S) \). As \(N_S(C) \not\subset C \), \(xy \) is conjugate to \(x \) in \(G \) and \(C_o(xy) = C \). Since \(y \) is not conjugate to \(x \) in \(G \), it follows from Theorem 1 that \((C_l(y)) \) is a normal elementary Abelian 2-subgroup of \(G \). As before \(I \cap (C_l(y)) = \{ y \} \), and it follows by Theorem 1 that \(o((C_l(y))) \leq 4 \) in contradiction to our assumptions. The proof is complete.

It remains to prove Corollary 4. If \(o(C_o(w)) = 2 \), then \(G \) is not simple. If \(o(C_o(w)) = 3 \), then by [2], \(G \) is isomorphic either to \(PSL(2, 5) \) or to \(PSL(2, 7) \). If \(o(C_o(w)) = 4 \) and \(o(w) = 4 \), then by [6], \(G \) is isomorphic to one of the groups \(PSL(2, 7) \), \(A_6 \) and \(A_7 \). If, finally, \(o(C_o(w)) = 4 \) and \(o(w) = 2 \), then by Theorem 2, \(G \cong PSL(2, 5) \).

4. Proof of Theorem 3. If \(S = S_0 \), then by [5], \(G \cong PSL(2, q) \), \(q > 3 \). If \(q \) is even, then \(G \cong PSL(2, 4) \cong PSL(2, 5) \). If \(q \) is odd, then the centralizer \(C \) of an involution of \(G \) is a dihedral group of order \(q + e \), \(e = \pm 1 \). For \(S \) to be normal in \(C \), \(q + e = 4 \) and \(q = 5 \). Thus again \(G \cong PSL(2, 5) \). Suppose next that \(S_0 \not\subset S \), \(\{ y \} = Z(S) \cap S_0 \). Then \(N_S(S_0) \not\subset S_0 \), \(xy \) is conjugate to \(x \) in \(G \) and \(S_0 \) is the normal Sylow 2-subgroup of \(C_o(xy) \). As \(y \) is not conjugate to \(x \) in \(G \), it follows from Corollary 1 that \(G \) contains a proper, nontrivial, normal subgroup, in contradiction to the simplicity of \(G \). The proof is complete.
References

1. R. Brauer and K. A. Fowler, On groups of even order, Ann. of Math. 44 (1943), 57–79.

University of California, Santa Barbara