ON THE KERNEL FUNCTION FOR THE
INTERSECTION OF TWO SIMPLY
CONNECTED DOMAINS

TED J. SUFFRIDGE

1. Introduction. Let D_1 and D_2 be bounded simply connected domains in the complex plane each containing the origin and let D be the component of $D_1 \cap D_2$ which contains the origin. It is clear that D is simply connected. Let $\{W_n\}_{n=1}^\infty$ and $\{V_n\}_{n=1}^\infty$ be complete orthonormal sets in the spaces $L^2(D_1)$ and $L^2(D_2)$ respectively (if G is a domain then $L^2(G)$ is the space of functions analytic in G with $\int |f|^2 < \infty$). In this paper we show that the set $\{W_n: n = 1, 2, \ldots \} \cup \{V_n: n = 1, 2, \ldots \}$, with the domain restricted to D in each case, spans $L^2(D)$. This means that given functions f_1 and f_2 which map D_1 and D_2 conformally onto the disk $|z| < 1$ one can construct a function f which maps D conformally onto the disk. This can be done as follows. Obtain $\{W_n\}_{n=1}^\infty$ and $\{V_n\}_{n=1}^\infty$ from f_1 and f_2 [3, p. 247] then construct a complete orthonormal set $\{Q_n\}_{n=1}^\infty$ for $L^2(D)$. The Bergman kernel function $K(z, \xi)$ for D is

$$K(z, \xi) = \sum_{n=1}^\infty Q_n(z)Q_n(\xi).$$

We may then choose f so that $f(0) = 0$ and $f'(z) = (\pi/K(0, 0))^{1/2} K(z, 0)$.

We observe that the result is clearly true in case the complements of D_1 and D_2 are closed domains. In this case the set $\{z^n: n = 0, 1, \ldots \}$ spans each of $L^2(D_1)$, $L^2(D_2)$ and $L^2(D)$, [2] and [3, p. 254].

2. Proof of the Theorem. Let f_1, f_2 and f be functions which map D_1, D_2 and D respectively onto the disk $|z| < 1$ with $f_1(0) = f_2(0) = f(0) = 0$. Suppose $g \in L^2(D)$. Since $\{(n + 1/\pi)^{1/2} b_n f^n(z) f'(z) \}_{n=0}^\infty$ is a complete orthonormal set in $L^2(D)$ [3, p. 247] we may write

$$g(z) = \sum_{n=0}^\infty (n + 1/\pi)^{1/2} b_n f^n(z) f'(z), \quad z \in D,$$

the series being absolutely and uniformly convergent on compact subsets of D and

$$\int \int_D |g|^2 = \sum_{n=0}^\infty |b_n|^2 < \infty.$$

Presented to the Society, January 26, 1969; received by the editors October 14, 1968.

1 This research was supported by NSF Grant GP 8225.
Define

\[g_\rho(z) = \sum_{n=0}^{\infty} (n + 1/\pi)^{1/2} \rho^n b_n(z) f'(z), \quad 0 < \rho < 1. \]

Lemma 1. There exists \(g^{(1)}_\rho(z) \) analytic in \(D_1 \) and \(g^{(2)}_\rho(z) \) analytic in \(D_2 \) such that

\[g_\rho(z) = g^{(1)}_\rho(z) + g^{(2)}_\rho(z) \quad \text{when} \quad z \in D. \]

Proof. Let \(\{r_n\}_{n=1}^\infty \) be an increasing sequence of positive numbers such that \(\lim_{n \to \infty} r_n = 1 \). For \(0 < r < 1 \), define

\[D_1(r) = f_1^{-1}(rf_1(z)), \quad z \in D_1, \]
\[D_2(r) = f_2^{-1}(rf_2(z)), \quad z \in D_2, \]
\[D(r) = f^{-1}(rf(z)), \quad z \in D, \]

and let \(C^{(1)}_r \), \(C^{(2)}_r \) and \(C^{(0)} \) be the corresponding boundaries. Let \(D_r \) be the component of \(D^{(0)}_1 \cap D^{(0)}_2 \) which contains the origin and let \(\{R_n\}_{n=1}^\infty \) be an increasing sequence of positive numbers such that \(\lim_{n \to \infty} R_n = 1 \) and \(D^{(R_n)} \supset D_{r_n}, \quad n = 1, 2, \ldots \). We thus have a sequence \(\{D_{r_n}\} \) of domains such that \(D_{r_{n+1}} \supset D_{r_n}, \quad \bigcup_{n=1}^\infty D_{r_n} = D \) and a sequence \(\{C^{(R_n)}\}_{n=1}^\infty \) of closed curves contained in \(D \) such that \(D_{r_n} \) is contained in the interior of \(C^{(R_n)} \) and for \(z \in D_{r_n} \) and \(\xi \in C^{(R_n)} \),

\[\min | \xi - z | = M_n > 0, \quad n = 1, 2, \ldots. \]

We now wish to find \(\{\Gamma^{(1)}_n\} \) and \(\{\Gamma^{(2)}_n\} \) such that \(\Gamma^{(1)}_n \cup \Gamma^{(2)}_n = C^{(R_n)} \) and such that \(\Gamma^{(1)}_n \cap D^{(R_n)}_1 \) and \(\Gamma^{(2)}_n \cap D^{(R_n)}_2 \) are empty, \(n = 1, 2, \ldots \). This is accomplished by setting \(\Gamma^{(1)}_n = C^{(R_n)} \cap D^{(R_n)}_1 \) and \(\Gamma^{(2)}_n = C^{(R_n)} \cap D^{(R_n)}_2 \).

For \(j = 1, 2, m \geq n = 1, 2, \ldots \) and \(z \in D^{(R_n)}_j \), define

\[h^{(j)}_{m,n}(z) = \frac{1}{2\pi i} \int_{\Gamma^{(j)}_n} \frac{g_\rho(\xi)}{\xi - z} d\xi. \]

Then when \(z \in D_{r_n}, \ m \geq n \) we have

\[g_\rho(z) = h^{(1)}_{m,n}(z) + h^{(2)}_{m,n}(z). \]

Further, if \(z \in D^{(R_n)}_1 \cap D^{(R_n)}_2 \) with \(m \geq n \) and \(m \geq n' \) then

\[h^{(j)}_{m,n}(z) = h^{(j)}_{m,n'}(z). \]

We now fix \(n \) and show that \(\{h^{(j)}_{m,n}\}_{m=n}^\infty \) is a normal family in
Since the series (1) converges uniformly in $D^{(R_n)}$, we may write

$$h_{m,n}^{(j)}(z) = \sum_{k=0}^{\infty} ((k + 1)/\pi)^{1/2} \rho_{k} a_{m,n}^{(j)}(z; k), \quad z \in D^{(r_n)},$$

$j = 1, 2,$ where

$$a_{m,n}^{(j)}(z; k) = \frac{1}{2\pi i} \int_{\Gamma_{m}^{(j)}} \frac{f^{k}(\xi)f^{(j)}(\xi)}{\xi - z} \, d\xi.$$

But $w \in f(\Gamma_{m}^{(j)})$ implies $|w| = R_m < 1$ so

$$|a_{m,n}^{(j)}(z; k)| \leq \frac{1}{2\pi} \int_{f(\Gamma_{m}^{(j)})} \frac{|dw|}{M_n} \leq \frac{1}{2\pi} \int_{0}^{2\pi} \frac{d\theta}{M_n} = \frac{1}{M_n}.$$

Now (9) and (10) imply

$$|h_{m,n}^{(j)}(z)| \leq \sum_{k=0}^{\infty} ((k + 1)/\pi)^{1/2} \rho_{k} |b_{k}| \frac{1}{M_n}, \quad z \in D^{(r_n)}.$$

The series (11) converges by (2) and the fact that $\rho < 1$. Hence for fixed n and $j = 1, 2$, the family $\{h_{m,n}^{(j)}\}_{m=n}^{\infty}$ is uniformly bounded in $D^{(r_n)}$ and is therefore a normal family. Let I_{1} be a subset of the positive integers such that $\{h_{m,n}^{(1)}: m \in I_{1}\}$ converges to a function, say $h_{1}^{(1)}$, analytic in $D^{(r_n)}$. Let $I_{2}^{(2)} \subseteq I_{1}$ be such that $\{h_{m,n}^{(2)}: m \in I_{2}^{(2)}\}$ converges to $h_{2}^{(2)}$ analytic in $D^{(r_n)}$. Continuing in the same manner choose $I_{n}^{(n)} \subseteq I_{n}^{(n-1)}$ so that $\{h_{m,n}^{(n)}: m \in I_{n}^{(n)}\}$ converges to $h_{n}^{(n)}$ in $D^{(r_n)}$. Using (7) and (8), we then conclude

$$g_{\rho}(z) = h_{n}^{(1)}(z) + h_{n}^{(2)}(z) \quad \text{if} \quad z \in D_{n},$$

$$h_{n}^{(j)}(z) = h_{n}^{(j)}(z) \quad \text{if} \quad z \in D^{(r_n)} \cap D^{(r_n')}.$$
the series being absolutely and uniformly convergent on compact subsets of D_j, $j = 1, 2$.

Proof. The function $g_\phi(f_j^{-1}(w))$ is analytic in $|w| < 1$ so $g_\phi(f_j^{-1}(w)) = \sum_{n=0}^\infty a_n^j w^n$ and setting $z = f_j^{-1}(w)$, (13) follows.

Now let $\{W_n\}_{n=1}^\infty$ and $\{V_n\}_{n=1}^\infty$ be complete orthonormal sets in $L^2(D_1)$ and $L^2(D_2)$ respectively. Let $\{Q_n\}_{n=1}^\infty$ be an orthonormal set in $L^2(D)$ obtained by choosing a maximal linearly independent set from $\{W_n\} \cup \{V_n\}$ and orthonormalizing it.

Since $[f_j(z)], j = 1, 2$ is bounded, $f_j \in L^2(D_i), n = 0, 1, \ldots$, so we may write

$$f_1^n(z) = \sum_{k=1}^\infty a_{k,n} Q_k(z),$$

(14)

$$f_2^n(z) = \sum_{k=1}^\infty b_{k,n} Q_k(z), \quad z \in D,$$

the series converging uniformly and absolutely on compact subsets of D. Hence

$$g_\phi(z) = \sum_{n=0}^\infty \sum_{k=1}^\infty a_{k,n} Q_k(z) + \sum_{n=0}^\infty \sum_{k=1}^\infty b_{k,n} Q_k(z)$$

$$= \sum_{k=1}^\infty P_k Q_k(z), \quad z \in D.$$

(15)

The rearrangement is possible in (15) since the series (14) converge absolutely on compact subsets of D.

Now let $\epsilon > 0$ choose ρ so that

$$\int_D \left| g - g_\phi \right|^2 = \sum_{n=0}^\infty (1 - \rho^n)^2 |b_n|^2 < \epsilon.$$

It is known [1, p. 2] that $\cdot \int_D \left| g - \sum_{n=1}^\infty c_n Q_n \right|^2$ is a minimum when

$$c_n = d_n = \int_D g(z) \overline{Q_n(z)} \, dx \, dy, \quad n = 1, 2, \ldots.$$

Hence we have

$$\int_D \left| g - \sum_{n=1}^\in\infty d_n Q_n \right|^2 \leq \int_D \left| g - \sum_{n=1}^\in\infty P_n Q_n \right|^2$$

$$= \int_D \left| g - g_\phi \right|^2 < \epsilon.$$
This implies \(g(z) = \sum_{n=1}^{\infty} d_n Q_n(z), \quad z \in D \) and that \(\sum_{n=1}^{\infty} |d_n|^2 = \iint_D |g(z)|^2 \, dx \, dy < \infty \). This proves the following theorem.

Theorem. The set \(\{ Q_n \}_{n=1}^{\infty} \) is complete in \(L^2(D) \).

3. Discussion

Two interesting questions remain open. Given \(g \in L^2(D) \) it would be desirable to obtain \(g^{(1)}(z) \) and \(g^{(2)}(z) \) analytic in \(D_1 \) and \(D_2 \) respectively so that

\[
g(z) = g^{(1)}(s) + g^{(2)}(z), \quad z \in D.
\]

However the present method does not yield this result. It seems necessary to use \(g_p(z) \) in order to obtain normal families. Then \(g_p(z) \) can be written in the form (4).

A second open question is whether we may require \(g^{(j)} \in L^2(D_j), j = 1, 2 \) in (4).

References

University of Kentucky