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For any positive integer m > 1, say m = p\lp2* • • ■ p?, define

h(m) =min (ai, a2, • ■ • , ar) and i7(?ra)=max (ai, a2, - • • , ar). For

convenience take h(\) = 1 and 77(1) = 1. We prove that

(1) Hm -   Z *(/) - 1,
n->»     n     y_i

(2) hm -   Z H(j) = 1 + Z {1 - f O)"1},
«-.»   n     ,=i k=2

where f (k) is the zeta function. The infinite series on the right side

of (2) converges to 0.7 approximately.

We prove something more than (1). Paul Erdös suggested to me

in correspondence that it was likely that

n

(3) Z Hi) = » + cVn + o(\/w)-
3=1

His conjecture turned out to be correct, with c = f(3/2)/f(3). For-

mula (3) with this value of c is proved in §1, and of course this also

establishes (1). We prove (2) in §2. In §3 we discuss normal order of

hin) and Hin).

1. Proof of (3). Let 5 be the set of squares of the natural numbers,

and let Sin) denote the number of elements of 5 that do not exceed

«. Let T be the set of positive integers m such that him) 2; 2. Thus

TZ)S, and any element m oí T not in 5 can be written uniquely in

the form

(4) m = k2qiq2 ■ ■ ■ qt,    (?i?2 ■ ■ ■ qt)\k,    t è 1,

where ci, q2, • ■ ■ , qt are distinct primes. Now fix qiq2 • ■ ■ q¡ and

consider the number of elements of 7 that are ^n and have the

form (4) for some k. This is the same as the number of squares

= w/(3i?2 • ' ' 2«) that are divisible by qiq2 - • - qt. Now for any real

x>0 the number of positive squares ¿x that are divisible by qiq2-

• • • • qtisS(x/(qiq2 ■ ■ • qi)2)- Hence the number of elements of 7 that

are ¿n and have the form (4) is
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(5) S(n/(qiq2 ■■■qtY).

Also we observe that

(6) Vx - 1 < [Vx] = S(x) = y/x.

Thus if we sum the terms (5) over all subsets qi, q2, ■ • • , qt of pi, p2,

• • • , pr where pr is the rth prime and pr+i>n, we see that

(7) T(n) = T.S(n/(pßipß: ■ ■ -pi'))

where the sum is over the 2r terms with each ßi = 0 or 3. This gives

T(n) g £s(——--) á Vn- Û (1 + PT**)

by use of (6). But also for s> 1 we have f (s) = H(l ~P~')~X where the

product is over all primes, and so

(8) T(n)/Vn = f(3/2)/f(3).

On the other hand if we choose N> (pip2 ■ ■ ■ p,)3 we can rewrite

(7) as an inequality with n replaced by N,

T(N) > S(N/(p[lp2 ■ ■ ■ pi')) > VN n (1 + PT312) - V

by use of (6). It follows that

T(N)/VN > f(3/2)/f(2) û (1 + Pr312)'1 - 2T/N.
i>r

By taking r large enough, then N large enough, we see that this with

(8) implies

lim r(n)/v/«=f(3/2)/f(3),

(9)
T(n) = A/nf(3/2)/f(3) + o(Vn).

Next let S3 denote the set of cubes of the natural numbers, and let

Tz denote the positive integers m such that h(m)^3. Then .SECT'S,

and any member m of Tz not in Sz can be written uniquely in the

form

(10)      m = k qiqS ■ • • qt , (qiq2 ■ • • qt) \k, t =; 1, a< = 1 or 2,

where qi, q2, ■ ■ ■ , qt are distinct primes. Now fix q^ql • ■ ■ q"' and

consider the number of integers ¿re that belong to 7^3 and have the

form (10) for some k. The number of such integers is, by an argument

analogous to that leading to (5),
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(11) Siin/iqi    q2      ■ ■ ■ qt     )).

Then the analog to (7) is

(12) r8(«) = S3(n/(p\lpf2* ■ • • //))

where the sum is over the 3r terms with each /3, = 0, 4, or 5, and r is

chosen so that pr+i>n. Now S3(x) ¿\/x so that (12) leads to

r.(»)^Z  —-->
(^,... Pßrj

< n1" n (i + r4'*) II (i + r6/3)
p p

= «1'3f(4/3)f (5/3) {f (8/3)f (10/3)}-1,

(13) r,(») = o(«>'3).

A similar argument leads to Tkin) = 0(nllk) for any integer &§;3,

where 7«; denotes the positive integers m such that h(m)^k. How-

ever, we need this only for k = 3 in this paper.

Now we examine the positive integers ä(1), A(2), • ■ • , A(w). The

number of these that exceed 1 is 7(«) ; the number that exceed 2 is

73(m). Also we note that

maxj/z(l), ¿(2), • • • ,h(n)} = [log2 »].

It follows that

n + Tin) ^ â(1) + Ä(2) + • • • + A(») ^ w + 7(w) + 73(») -log2 w.

This with (9) and (13) establishes (3) with c = f(3/2)/f(3).

2. Proof of (2). Let Qk be the set of ¿-power free integers, i.e. the

set of positive integers m such that 77(wî)=& — 1. Now the number

of integers m satisfying 1 ̂  m ^ n and 77(m) = & — 1 is Qk in) — Ç^-i («).

Also for wSï2 the maximum of 77(1), H{2), • • • , Hin) is [log2w].

Thus we see that

Z h(í) = Z (* -1) {e*(«) - e*-i(»)},   j = [logi »].
t=l fc-2

But Çy+i(«) = n, so this can be written as

(14) Z H(i) - jn - Z &(»),       j - [log, n].
t=l *=2
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Next we prove that if r satisfies p*^n^p*+1 then

(15) &(») = E(-D
<»l+a2f- ■ ■+«■

[n/(pi p2   ■ ■ ■ pr )]

where the sum contains 2r terms obtained by taking each a¿ = 0 or k.

This can be established by interpreting [n/s] as the number of inte-

gers ¿re that are divisible by s. Thus the right side of (15) can be

interpreted as the number of integers from 1 to re, first with those

divisible by pi deleted, then with those divisible by pi deleted, • • • ,

then with those divisible by p\ deleted, then with those divisible by

pXpl counted back in, and so on. Hence (15) follows by use of the

inclusion-exclusion principle.

Next, equation (15) can be written as

(16) Qk(n) = E/*(<*) [»/<**],

where the sum is over all positive divisors d of pip2 ■ ■ -pT. In this

sum any term for which dk>n has [n/dk] = 0 so we can take the sum

in (16) over all positive integers d satisfying dk^n. It is well known

that

ri*)-1

This with (16) gives

nu-r*) = Zß(d)/dk.
p d=l

»*■(*)- Qk(n) = S
i(d) -re

dk
S /*(<*)

,1M;

n

dk.

—^ In      r re T)

dktn U* L dkJj
+ £

¡x(d) -n

dk>n        dk

(17) K(k)-1 - Qk(n)
W*      ldki)       ¿ndk

Consider the two sums on the right side of (17). The first is less

than re1'*. As to the second sum, its first term is less than 1, and all

other terms are bounded by

x~

»iß

Hx = nl'k/(k - 1) < re1'

since & = 2. Hence (17) can be written

| nÇ(k)-1 - Qk(n) |   = re1'* + 1 + re1'* < 3re1'*.

This with (14) implies
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«-'E^-i-Zíi-íW-1}
*:-•>

j - M"1 Z Qk(n) - 1 - Z {1

¿{»r(Ä)-1 -e*(»)}
*=2

á «-1 Z I «f O)-1 - <M») I
Jfc=2

3

g w"1 X 3m1/* = »_1(3m1/2) log2 n.

s(k)-1)

As w tends to infinity so does/= [log2w], and hence we have (2).

3. The normal order of h(n) and 77(w). We use the definition of

normal order given in [l, p. 356]. It is clear from equation (1) that

hin) has normal order 1, since hin) = 1 for almost all positive inte-

gers n. On the other hand 77(w) has no normal order, because it is

an integer-valued function whose average order, by equation (2),

lies between 1 and 2.
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