TAME SUBSETS OF SPHERES IN E^3

C. E. BURGESS1 AND J. W. CANNON2

We present some conditions, in terms of special types of sequences of 3-manifolds with boundary, which are necessary and sufficient for a compact subset of a 2-sphere in E^3 to be tame. As a corollary to our results, we find that a tree-like subcontinuum K of a 2-sphere in E^3 is tame if and only if K can be described with trees of polyhedral 3-cells. Thus, while every tree-like continuum in E^2 can be described with trees of 2-cells in E^2 [1, Theorem 3], there exist tree-like continua in E^3 which are subsets of a 2-sphere and which cannot be described with trees of 3-cells in E^3.

A subset K of a 2-sphere in E^3 is defined to be tame if there is a homeomorphism of E^3 onto itself that carries K into a polyhedral sphere.

A sequence $\{M_i\}$ of sets is defined to be sequentially 1-ULC if for each $\epsilon > 0$ there exist an integer k and a $\delta > 0$ such that, for $n > k$, each δ-loop in M_n can be shrunk to a point in an ϵ-subset of M_n. (An ϵ-set is a set with a diameter less than ϵ.)

A set F is defined to be ϵ-dominated by a set K if every point of F is a subset of an ϵ-arc which intersects K and is a subset of F.

We say that a sequence $\{M_i\}$ of polyhedral 3-manifolds with boundary uniformly describes a compact set K in E^3 if

1. for each i, $M_{i+1} \subset \text{Int } M_i$,
2. for each i, each component of M_i is $1/i$-dominated by some component of K, and
3. $K = \bigcap_{i=1}^{\infty} M_i$.

A finite collection T of polyhedral 3-cells is called a tree of cubes if the following conditions are satisfied:

1. Each two intersecting elements of T have a 2-cell as their intersection.
2. The nerve of T is a tree (i.e., a dendrite).

A tree of disks in E^2 can be defined similarly.

We say that a compact set K in E^3 can be uniformly described with trees of cubes if for each $\epsilon > 0$ there exists a finite collection C_1, \cdots, C_n of disjoint polyhedral cubes such that

1. $K \subset \bigcup_{i=1}^{n} \text{Int } C_i$,
2. for each i, there exists a tree T_i of ϵ-cubes whose union is

Received by the editors October 7, 1968.

1 Work supported by NSF Grant GP-7058.

2 National Science Foundation Graduate Fellow.

395
Lemma 1. If K is a continuum in E^2 that does not separate E^2, then for each $\varepsilon > 0$ there is a polyhedral disk D in E^2 such that $K \subset \text{Int } D$ and D is ε-dominated by K.

Proof. There exists a disk D' in E^2 such that $K \subset \text{Int } D'$ and every point of D' is within a distance $\varepsilon/2$ of K. Let R_1, \ldots, R_n be triangular $\varepsilon/2$-disks in $\text{Int } D'$ such that $K \subset \bigcup_{i=1}^n \text{Int } R_i$, each $\text{Int } R_i$ intersects K, and $\text{Bd } R_1, \ldots, \text{Bd } R_n$ are in relative general position. Let D denote $\bigcup_{i=1}^n R_i$ together with all of its bounded complementary domains in E^2. It follows that D is a disk and that $K \subset \text{Int } D \subset \text{Int } D'$. Every point of $\bigcup_{i=1}^n R_i$ can be joined to K with an $\varepsilon/2$-arc in D and every point of $D - \bigcup_{i=1}^n R_i$ lies on a straight arc which intersects $\bigcup_{i=1}^n R_i$ and is of length less than $\varepsilon/2$. Thus the polyhedral disk D is ε-dominated by K.

Lemma 2. If K is a compact set in E^3 such that each component of K is nondegenerate and K can be uniformly described with a sequence $\{M_i\}$ of 3-manifolds with boundary, then for each $\varepsilon > 0$ there exist a compact subset K' of K and a sequence $\{M'_i\}$ of 3-manifolds with boundary such that

1. the diameters of the components of K' have a positive lower bound,
2. each component of K with a diameter no less than ε is a subset of K',
3. $\{M'_i\}$ uniformly describes K', and
4. for each i, there is an integer n_i so that each component of M'_i is a component of M_{n_i}.

Proof. Let H denote the union of all components of K that have a diameter no less than ε. Let n_1 be a positive integer such that $1/n_1 < \varepsilon/4$, let M'_i denote the union of all components of M_{n_1} that intersect H, and let H_1 be the union of a finite number of components of K such that each component of M'_i is $1/n_1$-dominated by some component of H_1 and each component of H_1 $1/n_1$-dominates some component of M'_i. We proceed by induction to define sequences $\{n_i\}$, $\{M'_i\}$, and $\{H_i\}$. Suppose that n_i, M'_i, and H_i have been defined for each $i < j$ and that each component of $H \cup (\bigcup_{i=1}^{j-1} H_i)$ has a diameter greater than $\varepsilon/2$. Let n_j be a positive integer such that $n_j > n_{j-1}$ and each component of $H \cup (\bigcup_{i=1}^{j-1} H_i)$ has a diameter greater than $\varepsilon/2 + 2/n_j$. Let M'_j denote the union of all components of M_{n_j} that intersect $H \cup (\bigcup_{i=1}^{j-1} H_i)$, and let H_j be the union of a finite number of components of K such that each component of M'_j
is $1/n_j$-dominated by some component of H_j and each component of H_j $1/n_j$-dominates some component of M'_j. Thus we have defined the sequences $\{H_i\}$ and $\{M'_i\}$. Let $K' = H \cup (\text{cl } \bigcup_{j=1}^\infty H_j)$. The set K' and the sequence $\{M'_i\}$ satisfy the requirements of the conclusion of Lemma 2.

Theorem 1. Suppose K is a closed subset of a 2-sphere S in E^3 such that K does not separate S and the components of K are nondegenerate. Then in order that K should be tame it is necessary and sufficient that there exist a sequence $\{M_i\}$ of 3-manifolds with boundary such that

1. K is uniformly described by $\{M_i\}$,
2. each component of each M_i is a polyhedral cube, and
3. $\{M_i\}$ is sequentially 1-ULC.

Proof of Sufficiency. It follows from Lemma 2 that K is the union of a countable number of compact sets K_1, K_2, \cdots such that, for each i, K_i satisfies the sufficiency hypothesis of Theorem 1 and the diameters of the components of K_i have a positive lower bound. That K is tame will follow from [5, Theorem 1] and [6, Theorem 6], together with a proof that, for each i, $(*, K_i, S)$ is satisfied. (A definition of this property can be found in [6].) Thus to prove that K is tame under the sufficiency hypothesis, we need only prove that $(*, K, S)$ is satisfied under the special assumption that the diameters of the components of K have a positive lower bound. Making this assumption, we note that the proof of Theorem 1 of [3] shows that $(*, K, S)$ is satisfied if for each component U of $E^3 - S$ the sequence $\{\text{cl}(U \cap \text{Bd } M_i)\}$ is sequentially 1-ULC in $E^3 - K$.

Let U be a component of $E^3 - S$, and let ϵ be a positive number. Let δ be a positive number such that $\delta < \epsilon/4$ and each δ-set on S is a subset of an $\epsilon/4$-disk on S. Using the hypothesis that $\{M_i\}$ is sequentially 1-ULC, choose a positive integer k and a positive number δ_i such that $1/k < \epsilon/4$ and, for each $i > k$, each δ_i-loop in M_i can be shrunk to a point in a δ-subset of M_i. Choose $\eta > k$, and let J be a simple closed curve in $\text{cl}(U \cap \text{Bd } M_\eta)$ of diameter less than δ_i. Suppose that J cannot be shrunk to a point in an ϵ-subset of $E^3 - K$.

Let C denote the component of M_η that contains J. It follows from Dehn’s Lemma [7] that J is the boundary of a δ-disk D so that $\text{Int } D \subseteq \text{Int } C$. By the above supposition and our choice of δ, there exists an $\epsilon/4$-disk E on S such that $D \cap E \neq \emptyset$ and $D \cap S \subset E$. Let D_1 and D_2 be the two disks on $\text{Bd } C$ that are bounded by J. It follows from our supposition that each of D_1 and D_2 has a diameter no less than ϵ. Thus D_1 and D_2 contain points q_1 and q_2, respectively, such that...
\[
\rho(q_1 \cup q_2, D \cup E) > 1/k.
\]

Let \(K_0 \) be a component of \(K \) such that \(K_0 \subset \text{Int} \, C \) and \(C \) is \(1/n \)-dominated by \(K_0 \). There exists points \(p_1 \) and \(p_2 \) of \(K_0 \) which lie with \(q_1 \) and \(q_2 \), respectively, on \(1/n \)-arcs \(A_1 \) and \(A_2 \) in \(C \). Since \(K_0 \subset \text{S}\cap \text{Int} \, C \), it follows that there exists an arc \(A \) in \(\text{S}\cap \text{Int} \, C \) with endpoints \(p_1 \) and \(p_2 \). The requirements in the choice of \(p_1 \) and \(p_2 \) imply that \(p_1 \cup p_2 \subset \text{S} - E \). Thus, since \(D \cap \text{S} \subset E \), it follows that there is an arc \(B \) from \(p_1 \) to \(p_2 \) such that \(B \cap D = \emptyset, B \subset \text{E}^3 - U \), and \(A \cup B \) is a simple closed curve. The way we constructed \(A \cup B \) relative to \(D \cup \text{Bd} \, C \) implies that \(A \cup B \) links \(J \). However, this is impossible as \(J \subset \text{S} \cup U \) and \(A \cup B \subset \text{E}^3 - U \). This contradiction enables us to conclude that \(J \) can be shrunk to a point in an \(\varepsilon \)-subset of \(\text{E}^3 - K \) and thus that \(\{ \text{cl}(U \cap \text{Bd} \, M_i) \} \) is sequentially \(1 \)-ULC in \(\text{E}^3 - K \). As we indicated previously, this implies that \((*, K, S) \) is satisfied and establishes the sufficiency of our condition.

Proof of Necessity. Using coordinates \((x, y, z)\) for \(\text{E}^3 \), we let \(P = \{(x, y, z) \mid z = 0\} \). We assume that \(K \subset P \) and that \(\text{Diam} \, K < 1/2 \). We will define the sequence \(\{M_i\} \) by induction.

Let \(M_1 \) denote a polyhedral cube of diameter less than 1 such that \(K \subset \text{Int} \, M_1 \). Suppose now that \(M_i \) has been defined for \(i < n \). It follows from Lemma 1 that there exist a finite sequence \(D_1, \ldots, D_m \) of polyhedral disks in \(P \) and a finite sequence \(K_1, \ldots, K_m \) of distinct components of \(K \) such that

\[
\begin{align*}
(4) & \quad \bigcup_{j=1}^{m} D_j \subset \text{Int} \, M_{n-1}, \\
(5) & \quad \text{each component of } K \text{ is a subset of some } \text{Int} \, D_j, \quad 1 \leq j \leq m, \\
(6) & \quad K_j \subset \text{Int} \, D_j, \quad 1 \leq j \leq m, \\
\end{align*}
\]

and

\[
\begin{align*}
(7) & \quad D_j \text{ is } 1/2n \text{-dominated by } K_j, \quad 1 \leq j \leq m.
\end{align*}
\]

There exists a finite sequence \(H_1, \ldots, H_r \) of disjoint disks such that

\[
\begin{align*}
(8) & \quad K \subset \bigcup_{j=1}^{r} \text{Int} \, H_j, \\
(9) & \quad K_j \subset \text{Int} \, H_j \subset H_j \subset \text{Int} \, D_j, \quad 1 \leq j \leq m, \\
\end{align*}
\]

and

\[
\begin{align*}
(10) & \quad \text{each } H_j, \quad 1 \leq j \leq r, \text{ is a subset of some } \text{Int} \, D_s, \quad 1 \leq s \leq m.
\end{align*}
\]
Now we identify disjoint closed sets L_1, \ldots, L_m whose union is K such that

(11) each L_i is a finite union of sets of the form $K \cap H_j$,

and

(12) $K_j \subset L_j \subset \text{Int} D_j, \quad 1 \leq j \leq m.$

Let γ be a positive number such that

(13) $\gamma < \frac{1}{3} \rho \left(\bigcup_{j=1}^m D_j, \text{Bd } M_{n-1} \right)$

and

(14) $\gamma < 1/10n.$

Let z_1, \ldots, z_m be positive numbers such that

(15) $z_1 < z_2 < \cdots < z_m < \gamma.$

Let $P_j = \{(x, y, z) \mid z = s_j\}, 1 \leq j \leq m.$ There exists a piecewise-linear γ-homeomorphism g of E^3 onto itself such that $g|L_j$ is a vertical projection of L_j into $P_j, 1 \leq j \leq m.$ There exist a positive number σ and disjoint polyhedral cubes W_1, \ldots, W_m such that

(16) $\sigma < \gamma,$

(17) $W_j = \{(x, y, z) \mid (x, y, 0) \in D_j \text{ and } z_j - \sigma \leq z \leq z_j + \sigma\}.$

For each $j, 1 \leq j \leq m,$ let $C_j = g^{-1}(W_j)$ and let $M_n = \bigcup_{j=1}^m C_j.$ It follows from the way we have constructed M_n that

(18) $M_n \subset \text{Int } M_{n-1},$

(19) $K \subset \text{Int } M_n,$

and

(20) each component of M_n is $1/n$-dominated by some component of $K.$

In particular, C_j is $1/n$-dominated by $K_j.$

With the above inductive procedure we have defined a sequence $\{M_i\}$ of 3-manifolds with boundary which satisfies requirements (1) and (2). It remains for us to show that $\{M_i\}$ is sequentially 1-ULC.

Let ϵ be a positive number, and let k be an integer and δ a positive number such that $1/k < \epsilon$ and $\delta < \epsilon - 1/k.$ Let L denote a δ-loop in $M_i,$ where $i > k.$ We wish to show that L can be shrunk to a point in an ϵ-set in $M_i.$ There is a component C of M_i such that $L \subset C.$
Let g_i denote the piecewise linear-$1/10i$-homeomorphism used in the inductive procedure to obtain M_i. It follows that $g_i(L)$ is a loop in $g_i(C)$ with a diameter less than $\delta + 1/5i$. From (14) and (17) we see that $g_i(L)$ is a subset of a 3-cell V in $g_i(C)$ such that $\text{Diam } V < \delta + 2/5i$. It follows that $L \subset g_i^{-1}(V)$ and that

$$\text{Diam } g_i^{-1}(V) < \delta + 3/5i < \delta + 1/k < \varepsilon.$$

Thus we have shown that $\{M_i\}$ is sequentially 1-ULC.

Theorem 2. Suppose K is a 1-dimensional compact subset of a 2-sphere S in \mathbb{E}^3 such that $S - K$ is connected and the components of K are nondegenerate. Then in order that K should be tame it is necessary and sufficient that K can be uniformly described with trees of cubes.

Proof of Sufficiency. From the hypothesis, it follows that there exists a sequence $\{M_i\}$ of polyhedral 3-manifolds with boundary that uniformly describes K such that, for each i, each component of M_i is a polyhedral cube that is the union of the elements of a tree of $1/i$-cubes. It readily follows that $\{M_i\}$ is sequentially 1-ULC. Thus it follows from Theorem 1 that K is tame.

Proof of Necessity. We assume that K is a subset of the plane P as in the second part of Theorem 1. Now we can modify that proof by following a procedure described by Bing [1, Theorem 3] to require that each of the disks D_1, \ldots, D_m be the union of the elements of a tree of $\varepsilon/2$-disks and that, for each such tree, some component of K intersect each element of the tree. The process of moving the disks D_1, \ldots, D_m into different planes and of thickening them to obtain cubes can be followed to show that K can be uniformly described with trees of cubes.

Corollary. Suppose K is a 1-dimensional subcontinuum of a 2-sphere S in \mathbb{E}^3 such that $S - K$ is connected. Then K is tame if and only if there exists a sequence $\{M_i\}$ of polyhedral cubes such that, for each i,

1. $K \subset M_{i+1} \subset \text{Int } M_i$, and
2. M_i is the union of the elements of a tree of $1/i$-cubes.

Remarks. It is interesting to notice that there exists a 1-dimensional compact set H in \mathbb{E}^3 such that $\mathbb{E}^3 - H$ is connected but H cannot be uniformly described with trees of disks in \mathbb{E}^3. Such a set can be described as follows. Let

$$H = B \cup B_1 \cup B_2,$$
where
\[B = \{ (x, y) \mid x = 0 \text{ and } -1 \leq y \leq 2 \}, \]
\[B_1 = \{ (x, y) \mid 0 < x \leq 1, -1 \leq y \leq 3/4, \text{ and } y = \sin x^{-1} \}, \]
and
\[B_2 = \{ (x, y) \mid 0 < x \leq 1, 1/4 \leq y \leq 2, \text{ and } y = 1 + \sin x^{-1} \}. \]

We observe that while each arc in \(E^3 \) can be described with a chain of open sets in \(E^3 \), it follows from the above corollary that no wild arc on a 2-sphere in \(E^3 \) can be described with a tree of cubes in \(E^3 \). However, there do exist wild arcs in \(E^3 \) which can be described with trees, or even chains, of cubes in \(E^3 \).

The next theorem gives a partial answer to the following question [2, pp. 78 and 82]: Is a 2-sphere \(S \) in \(E^3 \) tame if it is tame modulo a tame closed subset of \(S \) that has no point as a component? In a separate paper [4], Cannon will give an affirmative answer to the general form of the question.

Theorem 3. If the closed subset \(K \) of the 2-sphere \(S \) in \(E^3 \) is tame and has no point as a component, and \(S - K \) is connected and locally tame, then \(S \) is tame.

Proof. For each positive number \(\epsilon \), let \(K_\epsilon \) denote the union of all components of \(K \) that have a diameter no less than \(\epsilon \). It follows from Theorem 1 and its proof that \((\ast, K_\epsilon, S)\) is satisfied. Then [5, Theorem 1] implies that \((\ast, K, S)\) is satisfied, and [6, Theorem 15] implies therefore that \(S \) is tame.

References

University of Utah