THE TOWER THEOREM FOR FINITE GROUPS

EUGENE SCHENKMAN

This note aims to give a simple proof of Wielandt’s theorem that the tower of automorphisms of a finite group with center 1 ends after a finite number of steps (cf. [2] and [4, p. 245]).

Our notation is as follows: $B < G$, $A < G$, denote respectively that B is invariant and A subvariant in G; $C_B(A)$ and $\mathcal{N}_B(A)$ denote respectively the centralizer and normalizer of A in B; $\mathfrak{A}(A)$ is the automorphism group of A, $|A|$ the cardinality of A, and A^ω is the smallest normal subgroup of A with A/A^ω nilpotent. All groups are finite.

Our proof of the tower theorem is based on the following facts.

(1) If $C_B(A) = 1$ then $C_{\mathcal{N}(A)}(A) = 1$.

(2) If $A = A_0 < A_1 < \cdots < A_r = G$ and if for $i = 0, 1, \cdots, r - 1$, $C_{A_{i+1}}(A_i) = 1$, then $C_{\mathcal{N}(A)}(A) = 1$ (cf [2, p. 244]).

(3) If $A < G$ and if $C_{\mathcal{N}(A)}(A) = 1$, then $C_{\mathcal{N}(A^\omega)}(A) \leq A^\omega$ (cf. [1]).

(4) If $A < G$ then $A^\omega B = B A^\omega$ for any $B < G$ (cf [3]).

As a corollary of (4) we have the following

(4*) If $H < G$ and $A < H$, then $H A^\omega B = B H A^\omega$.

We also will want the following readily proven fact.

(5) If $A < B$ and $A < B$ is simple then $A < B$.

With these results we can now prove the following result and then the tower theorem will be a direct consequence.

Theorem. Let $A < G$ and suppose that $C_{\mathcal{N}(A)}(A) = 1$, then $|G|$ is bounded in terms of $|A^\omega|$.

Proof. Let s_i denote the set of simple subvariant subgroups B_i of G and for $i = 1, 2, \cdots$, let s_{i+1} denote the set of subinvariant subgroups B_{i+1} of G such that B_{i+1} contains as a normal subgroup a B_i of s_i with B_{i+1}/B_i simple. For each i, all the subgroups B_i of s_i generate a normal subgroup H_i of G and we let K_i denote $H_i A^\omega$ (with K_0 denoting A^ω and K_0 denoting 1). Since $C_{\mathcal{N}(A)}(A) = 1$, $A^\omega \neq 1$ and hence $H_0 \neq K_0$. Let n be minimal so that $H_n = K_n$ (n is at most the length of a composition series of A^ω). Then for $i = 0, \cdots, n - 1$, $K_i < K_i B_{i+1}$ for any $B_{i+1} \in s_{i+1}$ by (5). Hence B_{i+1} and consequently $H_{i+1} \leq \mathcal{N}(K_i)$. Then in view of (3) and the fact that $K_i = H_i A^\omega$, $|K_i| \leq |A^\omega| \cdot |\mathfrak{A}(K_i)|$ for $i = 1, 2, \cdots$ and hence in particular $|K_n|$ is bounded in terms of $|A^\omega|$. But $K_n = H_n$ is normal in G and since

Received by the editors December 12, 1968.

The author is indebted to the National Science Foundation for support.
it follows that \(|G| \leq |A^a| \cdot |\mathcal{A}(K_n)|\). This proves the theorem.

It follows from the theorem with (1) and (2) that the tower of automorphisms of a finite group with center 1 is finite.

References

PURDUE UNIVERSITY