A NOTE ON PUNCTURED DISKS IN A 2-MANIFOLD

EDWARD M. BROWN

Let D_n be a punctured disk with $n - 1$ holes and let M be a separable 2-manifold. Let $f: D_n \to M$ be a map which is an embedding of the boundary ∂D_n of D_n.

Theorem. Some subfamily of the family

$$C_1 \cup \cdots \cup C_n = f(\partial D_n)$$

of simple loops contains C_1 and bounds an embedded punctured disk in M.

This was proved in [1] for $n = 1$, and in [2] for $n = 1, 2$ when M is closed and orientable.

Proof. We assume $n > 1$. Observe that $C_1 \cup \cdots \cup C_n$ is a boundary in the mod 2 homology of M. Thus any C_i is homologous to $\bigcup_{j \neq i} C_j$. If d were a generating loop of a handle or a Mobius band in M not meeting any other C_j, then it would generate a direct summand of the first homology group with $\bigcup_{j \neq i} C_j$ in the complementary summand. In particular each d is two sided.

Form a manifold N by cutting M apart along the curves C_i, $i = 2, \ldots, n$ (but not C_1) and attaching disks E_i, E'_i to the resulting boundary components. Form a space \tilde{N} by identifying E_i with E'_i for $i = 2, \ldots, n$. Then C_1 is null homotopic in \tilde{N} since C_2, \ldots, C_n bound disks. We show that C_1 is null homotopic in N.

Suppose not and consider what happens with the fundamental groups as we paste together one pair of disks at a time. If we bring together two components of N then we get the free product of their fundamental groups. If we paste together disks on the same component then we add a new generator and no relations. In neither case does C_1 become null homotopic.

By [1], C_1 bounds a disk D in N. Remove from D any of the E_i's which it contains and take the closure of the resulting subset of M. If at most one of each pair E_i, E'_i were contained in D, then the closure would be the desired punctured disk. If some pair E_i, E'_i were contained in D, then the closure would include a handle of M having C_i as a generating loop and not meeting any other C_j. This contradiction finishes the proof.

Received by the editor June 24, 1968.

1 This research partially supported by NSF grant GP-8057.
References