PROOF OF ANDREWS' CONJECTURE ON PARTITION IDENTITIES

HENRY L. ALDER

1. Introduction. As in [2], we denote by $B_d(n)$ the number of partitions of n of the form $n = b_1 + b_2 + \cdots + b_s$, satisfying the following conditions:

(i) $b_i - b_{i+1} \geq d$,
(ii) if $d | b_i$, then $b_i - b_{i+1} > d$.

We denote by $C_d(n)$ the number of partitions of n satisfying the above conditions and additionally

(iii) $b_s > d$.

These two partition functions appear in several of the well-known identities in the theory of partitions. Thus, the first of the Rogers-Ramanujan identities [5, p. 291] states that $B_1(n)$ is equal to the number of partitions of n into parts $\equiv \pm 1 \pmod{5}$, while the second Rogers-Ramanujan identity asserts that $C_1(n)$ is equal to the number of partitions of n into parts $\equiv \pm 2 \pmod{5}$. H. Göllnitz [3] and B. Gordon [4] proved independently that $B_2(n)$ is equal to the number of partitions of n into parts $\equiv 1, 4, 7 \pmod{8}$, while $C_2(n)$ is the number of partitions of n into parts $\equiv 3, 4, 5 \pmod{8}$. I. J. Schur [6] has proved that $B_3(n)$ is equal to the number of partitions of n into parts $\equiv \pm 1 \pmod{6}$. For $d > 3$, a theorem by the author [1, p. 713] can easily be extended to prove that $B_d(n)$ is not equal to the number of partitions of n into parts taken from any set of integers whatsoever.

Andrews [2, p. 441] has proved a certain identity involving $C_3(n)$, but states that he has not been able to obtain any simple partition-theoretic interpretation of this identity. He conjectures "that Alder's result for $B_d(n)$ is also valid for $C_d(n)$ with $d > 2$.”

It is the object of this paper to prove this conjecture of Andrews. In fact, we prove a more general result, namely that this conjecture is valid if we replace (iii) above by

(iv) $b_s \geq m$,

where $m \geq 2^1$, so that Andrews' conjecture is the special case where $m = d + 1$. This result is stated in the following

Received by the editors July 17, 1968 and, in revised form, December 28, 1968.

1 The author is grateful to the referee for suggesting this even more general inequality than that contained in the author's original manuscript and for proposing a corresponding simplification of the proof.

688
Theorem. The number \(C_{d,m}(n) \) of partitions of \(n \) into parts of the form \(n = b_1 + b_2 + \cdots + b_s \), with \(b_i \neq b_{i+1} \) and if \(d \mid b_i \), then \(b_i - b_{i+1} \geq d \), and \(b_s \geq m \), where \(m \geq 2 \), is not equal to the number of partitions of \(n \) into parts taken from any set of integers whatsoever if \(d > 2 \).

As a special case of this theorem it follows that there cannot exist a dual to Schur’s Theorem in the sense that the second of the Rogers-Ramanujan identities is a dual to the first one and it also explains why Andrews has not been able to obtain any simple partition-theoretic interpretation of his Theorem 3 in [2].

2. Proof of the theorem. We suppose that the theorem is false and that there exists such a set of integers \(a_1 < a_2 < a_3 < \cdots \); denote this set by \(A \) and the number of partitions of \(n \) into parts taken from this set by \(p_A(n) \). Let \(n \) be any integer for which \(C_{d,m}(n) \geq 2 \), then \(n \geq (m+d) + m = 2m + d \). Hence \(C_{d,m}(n) = 1 \) for \(m \leq n < 2m + d \); in particular, \(C_{d,m}(2m+2) = 1 \). Now, since \(C_{d,m}(n) = 0 \) for \(1 \leq n < m \), it follows that for \(m \geq 3 \), \(a_1 = m \), \(a_2 = m+1 \), \(a_3 = m+2 \). But then \(p_A(2m+2) \geq 2 \), since \(2m + 2 = m + (m+2) = (m+1) + (m+1) \), which is a contradiction. If \(m = 2 \), then \(a_1 = 2 \), \(a_2 = 3 \), and hence \(p_A(6) \geq 2 \), which is again a contradiction.

References

University of California, Davis