A COUNTABLE MINIMAL URYSOHN SPACE IS COMPACT

R. M. STEPHENSON, JR.

1. Introduction. A topological space X is said to be a Urysohn space provided that every pair of distinct points of X have disjoint closed neighborhoods. In [3] C. T. Scarborough and A. H. Stone prove that a countable minimal regular space is compact, and in [4] Scarborough asks if there exist noncompact minimal Urysohn spaces which are countable.

The principal result of this note is the following:

Theorem. A countable minimal Urysohn space is compact.

The terminology used here coincides with that in [3] and [4]. We shall denote the set of positive integers by N.

2. The theorem. According to [4, Theorem 14], a countable U-closed space has an isolated point. Our first lemma strengthens this result.

Lemma 1. Let X be a U-closed space, let I be its set of isolated points, and suppose that $X - I$ is countable. Then $\overline{I} = X$.

Proof. Suppose that there exists a nonempty open set V such that $V \cap I = \emptyset$. Let $X - I = \{x_n | n \in N\}$. An inductive argument shows that there exists a descending sequence V_n, $n \in N$, of nonempty open subsets of V such that for every $k \in N$ there exists a neighborhood W_k of x_k whose closure misses the closure of V_k. Then the filter base $\{V_n | n \in N\}$ is a U-filter on X which has void adherence.

Lemma 2. Let X be a U-closed space, I its set of isolated points, and \mathcal{F} a countable filter base on I. Then \mathcal{F} has an adherent point.

Proof. Let $\mathcal{F} = \{F_n | n \in N\}$. For each n choose a point $x_n \in \bigcap \{F_i | i \leq n\}$ and let $C = \{x_n | n \in N\}$. If there is a point $x \in \overline{C} - C$, then x is an adherent point of \mathcal{F}. If $\overline{C} = C$ and $\cap \mathcal{F} = \emptyset$, then the open- and-closed sets $\{x_j | j \geq n\}$, $n \in N$, generate a U-filter on X which has void adherence.

Proof of the Theorem. Let X be a countable minimal Urysohn space.

In [4] Scarborough proves that a minimal Urysohn space is semi-regular. In [2] Katětov proves that a semiregular absolutely closed space is minimal Hausdorff and that a Urysohn minimal Hausdorff

Received by the editors September 20, 1968.
space is compact (this latter result is also obtained in [1]). Thus it suffices for us to prove that X is absolutely closed.

Since X is a Lindelöf space, an easy argument shows that if every countable open filter base on X has an adherent point, then X is absolutely closed.

Let \mathcal{F} be a countable open filter base on X, and let I be the set of isolated points of X. Then $\mathcal{F} | I$ is a filter base by Lemma 1, so $\mathcal{F} | I$ and, hence, \mathcal{F} have nonvoid adherence by Lemma 2.

Corollary. A countable U-closed space is absolutely closed.

References