1. Introduction. In this paper, we describe methods of imbedding a Hausdorff space X in a compact space \overline{X} so that each function in a given family of continuous functions on X has a continuous extension to \overline{X} and the family of extensions separates the points of $\overline{X} - X$. In particular, if X is completely regular but not locally compact, then we shall exhibit a non-Hausdorff compactification which contains X as an open subset and is bigger than the Stone-Čech compactification of X. (Of course, every compactification of X is non-Hausdorff if X is not completely regular.) We shall also show that the completion of a metric space M may be obtained as a subset of a compactification of M by a rather simple construction.

By a compactification of a Hausdorff space X, we mean a compact space \overline{X} which contains, as a dense subset, the image of X under a fixed homeomorphism f. We usually do not distinguish between X and $f(X)$, and we say that \overline{X} contains X as a dense subset. In what follows, X is always a noncompact Hausdorff space, $\Delta \overline{X}$ denotes the closure of $\overline{X} - X$ in \overline{X}, and a mapping is always a continuous function. If \overline{X} is Hausdorff, we say that \overline{X} is a Hausdorff compactification of X. If \overline{X} is not Hausdorff, however, we still assume that it satisfies the following properties:

I. Compact subsets of X are closed in \overline{X}.

II. Any two distinct points x and y in $\Delta \overline{X}$ can be separated by disjoint open sets; i.e., there exist open sets U and V in \overline{X} with $x \in U$, $y \in V$, and $U \cap V = \emptyset$.

III. For each point $x \in X$ there is at most one point $z \in \overline{X} - X$ such that x and z cannot be separated by disjoint open sets in \overline{X}.

Clearly, II and III are necessary conditions for the points in $\Delta \overline{X}$ to be separated by a family of continuous functions from \overline{X} into a Hausdorff space; we shall show later that, together with Condition I, they are also sufficient. The following properties of \overline{X} are consequences of I, II, and the fact that X is dense in \overline{X}.

1 This work was supported by National Science Foundation research grants GP-5279 and GP-7537.
Proposition 1.1. If \overline{X} is a compactification of X, then:

(i) Two distinct points in X can be separated by disjoint open sets in \overline{X}.

(ii) The space \overline{X} is T_1.

(iii) In \overline{X}, a sequence converges to at most one point.

(iv) If X satisfies the first axiom of countability then compact subsets of \overline{X} are closed.

(v) If the compactification \overline{X} satisfies the first axiom of countability, then \overline{X} is Hausdorff.

(vi) X is locally compact if and only if X is open in \overline{X} and \overline{X} is Hausdorff.

Example. Following Arens [1], let X be the set of all pairs of nonnegative integers such that each point other than $(0, 0)$ is an open set and every neighborhood of $(0, 0)$ contains all but a finite number of points in all but a finite number of columns C_n, where $C_n = \{(m, m) : m \in \mathbb{Z}^+\}$. Then X is not first countable. Let \overline{X} be the space X together with a point P whose neighborhoods omit at most a finite number of points in X. Any nonrepeating sequence with an infinite number of points in each column C_n converges to P and has cluster point $(0, 0)$. Moreover, $\overline{X} - \{(0, 0)\}$ is compact but not closed in \overline{X}.

Now let \overline{X} and \bar{X} be two compactifications of X. By the notation $\overline{X} \cong \bar{X}$ we mean there is a mapping T of \overline{X} onto \bar{X} such that $T|X$ is the identity map. (To be more accurate, we should say that if f and g are the homeomorphisms of X into \overline{X} and \bar{X} respectively, then $T \circ f = g$.) If we also have $\overline{X} \cong \bar{X}$, then T is a homeomorphism, and in this case we write $\overline{X} \cong \bar{X}$.

2. Q-compactifications of X. Let Q be a nonvoid family of continuous functions on X with each $f \in Q$ having its range contained in a compact Hausdorff space S_f. Using the methods of [5], we now describe a compactification of X which is the compactification defined in [5] when X is locally compact.

Definition. Let Y be the product space $\prod_{f \in Q} S_f$ and e the evaluation map sending X into Y. (For each $x \in X$, $e(x)(f) = f(x)$.) Set

$$\Delta = \cap \{e(X - K) : K \text{ compact, } K \subseteq X\},$$

and let \overline{X}^Q be the (disjoint) union $X \cup \Delta$. Given an open set U in Y and a compact set $K \subseteq X$, we set $U_K = [U \cap \Delta] \cup [e^{-1}(U) - K]$. If \mathfrak{T} is the topology on \overline{X}^Q generated by the base consisting of all open
sets in X and all the sets U_k, then $(\overline{X}^0, 3)$ is called the Q-compactification of X.\footnote{Added July 19, 1968. The author has learned of a manuscript, Minimum and maximum compactifications of arbitrary topological spaces, by R. F. Dickman, Jr., submitted in January 1967 to the Trans. Amer. Math. Soc. Using a different definition than the one given here and starting with an arbitrary topological space X and a collection of mappings from X into a single compact Hausdorff space S, Professor Dickman has proved the existence of a compactification α_0X which has the properties established for \overline{X}^0 by Theorems 2.1 and 2.2 below, and is thus equivalent to \overline{X}^0. Professor Dickman has informed the author that these results will be included in a revised paper entitled Compactifications and real-compactifications of arbitrary topological spaces.}

It is not hard to show that \overline{X}^0 is, indeed, a compactification of X; e.g., \overline{X}^0 is compact since a net which is eventually in the complement of every compact subset of X has a cluster point in Δ. Clearly, \overline{X}^0 also has the following properties:

Theorem 2.1. Each function $f \in Q$ has a continuous extension mapping \overline{X}^0 into S_f, and the family of these extensions separates the points in $\overline{X}^0 - X$. Moreover, X is open in \overline{X}^0. Thus, if X is not locally compact, \overline{X}^0 is neither Hausdorff nor a space which satisfies the first axiom of countability.

Next we show that these properties determine the compactification \overline{X}^0 up to a homeomorphism.

Theorem 2.2. Let \overline{X} be a compactification of X such that each function f in a nonvoid subfamily Q_0 of Q has a continuous extension mapping \overline{X} into S_f and these extensions separate the points in $\Delta \overline{X}$. Then $\overline{X}^0 \cong \overline{X}$. If, moreover, X is open in \overline{X} (e.g., if X is locally compact) and if $Q_0 = Q$, then $\overline{X}^0 \cong \overline{X}$.

Proof. Let $\Gamma = \Delta \overline{X}$ and recall that $\Delta = \overline{X}^0 - X$. Let e, \tilde{e}, and \tilde{e} be the evaluation maps sending X, \overline{X}^0, and \overline{X} respectively into the product space $Y_0 = \prod_{f \in Q_0} S_f$. Given $x_0 \in \Delta$, let N be a neighborhood of $\tilde{e}(x_0)$ in Y_0, and let \overline{N} be its closure in Y_0. Then $\tilde{e}^{-1}(\overline{N}) \cap \Gamma \neq \emptyset$, for otherwise $e^{-1}(\overline{N}) = \tilde{e}^{-1}(\overline{N})$ is a compact subset of X, and $\tilde{e}^{-1}(N) - e^{-1}(\overline{N})$ is a neighborhood of x_0 in \overline{X}^0 that does not intersect X. Let $T(x_0)$ be the unique point in the intersection of all sets of the form $\tilde{e}^{-1}(\overline{N}) \cap \Gamma$ where \overline{N} ranges over the neighborhood system of $\tilde{e}(x_0)$ in Y_0. One thus extends the identity mapping on X to a function T from \overline{X}^0 into \overline{X}, and in a similar way one shows that T is onto. Clearly, T is continuous at each point of X. Given $x_0 \in \Delta$ and U an open neighborhood of $T(x_0)$ in \overline{X}, there is an open set V in Y_0 such
that \(\bar{e}(\Gamma - U) \subseteq V \) and \(\bar{e}(T(x_0)) = e(x_0) \in \bar{V} \). Moreover, the set \(K = X - \{ U \cup e^{-1}(V) \} \) is a compact subset of \(X \). Let \(W = X^0 - [K \cup e^{-1}(V)] \). Then \(T(W) \subseteq U \), so \(T \) is continuous at \(x_0 \), and thus \(T \) is continuous on all of \(X^0 \). The rest of the proof is clear.

Corollary 2.3. If \(Q_0 \) is a nonvoid subset of \(Q \), then \(X^0 \supseteq X^{Q_0} \).

Let \(\bar{e} \) be the evaluation map sending \(X^Q \) into \(Y \); then

\[
\bar{e}(X^Q) = e(X),
\]

since \(\bar{e}(X^Q) = e(X) \cup \Delta \) in \(Y \). One can, moreover, easily establish the following result:

Proposition 2.4. If there are no compact neighborhoods in \(X \), then \(\Delta \) is the closure of \(e(X) \).

Examples. (1) If \(Q \) consists of one mapping to a one point space, then \(X^Q \) is the Alexandroff one point compactification of \(X \). (See [4, p. 150].)

(2) Let \(X \) be the rational numbers in the real unit interval \([0, 1]\), and let \(Q \) consist of the single function \(f(x) = x \). Then \(\Delta \) is homeomorphic to \([0, 1]\). A typical neighborhood of a point \(y_0 \in \Delta \) is given by a constant \(\epsilon > 0 \) and a compact subset \(K \) of \(X \); it has the form

\[
\{ y \in \Delta : |y - y_0| < \epsilon \} \cup \{ x \in X - K : |x - y_0| < \epsilon \}.
\]

If \(X = [0, 1] \), then \(X^0 \supseteq \bar{X} \), but we do not have \(X^0 \subseteq \bar{X} \).

(3) Let \(H \) be an infinite-dimensional Hilbert space with the norm topology and let \(H^* \) be its dual space with the weak topology. Let \(X \) be the closed unit ball in \(H \), \(Q \) be the functions in \(H^* \), and \(e \) be the canonical map sending \(H \) onto \(H^* \). By Proposition 2.4, \(\Delta = e(X) \), which is the closed unit ball with the weak topology. A typical neighborhood of a point \(x \in \Delta \) has the form \([N \cap \Delta] \cup [e^{-1}(N) \cap X - K] \), where \(N \) is a weak neighborhood of \(x \) in \(H^* \) and \(K \subseteq X \) is compact in the norm topology.

Finally, we note that the results of this section can be applied to an arbitrary topological space \(X \) if one works with closed and compact subsets of \(X \) instead of compact subsets of \(X \). The details are left to the reader.

3. **Hausdorff \(Q \)-compactifications.** In this section, we assume that \(X \) is homeomorphic to its image \(e(X) \) in the product space \(Y = \prod_{f \in Q} S_f \) (see [4, p. 116]); \(Q \) is the family of functions described in §2. (If \(X \) is locally compact, then, following Constantinescu and Cornea [3], one may adjoin all continuous real-valued functions
with compact support to a given family of continuous functions to obtain a Q which satisfies these assumptions.) Identify X with e(X); as is well known [7], [2], [4] the closure of e(X) in Y is a compact Hausdorff space which contains X (i.e., e(X)) as a dense subset, and the functions in Q have continuous extensions to the closure of e(X). All the points in the closure of e(X) are separated by these extensions. We call this closure the Hausdorff Q-compactification of X, and we denote it by \overline{X}^Q. By Theorems 2.1 and 2.2, $\overline{X}^Q \supseteq \overline{X}^Q$, and $\overline{X}^Q \subseteq \overline{X}^Q$ if and only if X is locally compact. On the other hand, if there are no compact neighborhoods in X, then by Proposition 2.4, $\Delta = \Delta \overline{X}^Q$ is homeomorphic to \overline{X}^Q. The space \overline{X}^Q is unique in the following sense:

Theorem 3.1. Let X be a Hausdorff compactification of X with each function in Q having a continuous extension mapping X into \overline{X}. If these extensions separate the points of $\overline{X} - X$, then $\overline{X}^Q = \overline{X}$.

Proof. We need only show that the evaluation map ε which sends \overline{X} onto \overline{X}^Q is injective. Assume that $\varepsilon(x) = \varepsilon(y)$ for some $x \in X$ and $y \in \overline{X} - X$. Let $U \subseteq \overline{X}$ be a neighborhood of y such that $x \notin U$, and let $C = \overline{U} \cap X$. Then C is closed in X, so $\varepsilon(C) = X \cap D$ where D is closed in \overline{X}^Q. Since $\varepsilon(x)$ is not in D, y is not in the closed set $\varepsilon^{-1}(D)$. But this is impossible since y is in the closure of $C = \varepsilon^{-1}(D) \cap X$. Thus, ε is injective and therefore a homeomorphism.

Note that if Q_0 is a nonvoid subset of Q and X is homeomorphic to its image in $\prod_{r \in Q_0} S_r$, then since the projection of $\prod_{r \in Q_0} S_r$ onto $\prod_{r \in Q_0} S_r$ is continuous, $\overline{X}^Q \supseteq \overline{X}^Q$.

Examples. (1) If X is the set of rational numbers in $[0, 1]$ and Q consists of the single function $f(x) = x$, then $\overline{X}^Q = [0, 1]$. (Compare with Example 2 of §2.)

(2) Let X be a metric space with metric d, and let Q be the family of functions $\{d_x: x \in X\}$, where $d_x(y) = d(x, y)$ for all $y \in X$. Each d_x has its range in the interval $[0, +\infty]$. Set $X^* = \{z \in \overline{X}^Q: \exists \epsilon > 0 \exists x \in X \text{ with } d_x(z) < \epsilon\}$, and let $d^*(z, w) = \inf_{x \in X} [d_x(z) + d_x(w)]$ for each pair (z, w) in $X^* \times X^*$. Then one can show that d^* is a metric which generates the relative product topology on X^* and (X^*, d^*) is the completion of (X, d).

(3) A similar construction gives the completion X^* of a Hausdorff uniform space X: If the uniform topology of X is generated by the family of pseudometrics $\{d_\alpha: \alpha \in A\}$, and $Q = \{d_\alpha(x, \cdot): \alpha \in A, x \in X\}$, then

$$X^* = \{z \in \overline{X}^Q: \forall \epsilon > 0 \text{ and } \forall \alpha \in A, \exists x \in X \text{ with } d_\alpha(x, z) < \epsilon\}.$$
Using filters, Samuel [6] has constructed the largest compactification X^* in which a given uniform space X can be uniformly imbedded; the completion X^* is the subset of X^* consisting of all limits of Cauchy ultrafilters in X. However if Q is any collection of uniformly continuous functions from X into the real unit interval I such that X^{HQ} exists, then X is uniformly imbedded in X^{HQ}. Moreover, any Hausdorff compactification X in which X is uniformly imbedded is of the form X^{HQ} where each $f \in Q$ maps X uniformly into I. (See Theorem 4.2.) It follows that $X^* \cong X^{uQ}$ where u is the set of all uniformly continuous mappings of X into I. Thus the compactifications used in the last two examples are, in general, smaller than X^*. If, for example, X is the real line with 0 removed and X has the additive uniform structure, then the compactification used in Example 2 is the one point compactification of the real line where as X^* is "a space almost as complicated as the Čech compactification of the real line" [6, p. 124].

4. Properties of arbitrary compactifications. Let \hat{X} be any compactification of the Hausdorff space X such that \hat{X} satisfies the three conditions in §1. Let $R \subseteq \hat{X} \times \hat{X}$ be the equivalence relation which consists of the diagonal set $\{ (x, x) : x \in \hat{X} \}$ together with all pairs $(x, y) \in \hat{X} \times \hat{X}$ for which there is a $z \in \hat{X} - X$ such that neither x nor y can be separated from z by disjoint open sets. As usual, $R[x]$ denotes the set of all points in \hat{X} equivalent to a point x, and for any set $A \subseteq \hat{X}$, $R[A] = \bigcup_{x \in A} R[x]$.

Proposition 4.1. The relation R has the following properties:

(i) For each $x \in \hat{X}$, $R[x]$ is closed and therefore compact.

(ii) If x and y are points in \hat{X} with $R[x] \cap R[y] = \emptyset$, then there are disjoint open sets U and V in \hat{X} with $R[x] \subseteq U$ and $R[y] \subseteq V$.

(iii) If $z \in \hat{X} - X$ and U is an open neighborhood of z, then $R[z]$ is contained in the closure \overline{U} of U.

(iv) If $x \in X \cap \Delta \hat{X}$, then $R[x] = \{ x \}$.

(v) If C is compact in \hat{X}, then $R[C]$ is closed.

Proof. We shall only prove (v). We show first that $R[C] \cap \Delta \hat{X}$ is closed. If $\{z_\alpha\}_{\alpha \in A}$ is a net in $R[C] \cap \Delta \hat{X}$ and $\{z_\alpha\}$ converges to $z \in \Delta \hat{X}$, then for each α in the index set A there is a point x_α in $R[z_\alpha] \cap C$. Let $x \in C$ be a cluster point of the net $\{x_\alpha\}_{\alpha \in A}$. Given open neighborhoods U and V of z and x respectively, there is an $\alpha \in A$ such that $z_\alpha \in U$ and $x_\alpha \in V$. Since $x_\alpha \in R[z_\alpha]$ and either $x_\alpha = z_\alpha$ or $z_\alpha \in \hat{X} - X$, it follows that $U \cap V \neq \emptyset$, and thus $z \in R[C]$. We have shown that $R[C] \cap \Delta \hat{X}$ is closed.
Assume now that $y_0 \in R[C]$. Then for each set $R[x] \subseteq R[C]$, there is a pair of disjoint open sets U and V in X with $R[x] \subseteq U$ and $y_0 \in V$. Thus the compact set $\bigcup [R[C] \cap \Delta X]$ is contained in a finite union of open sets $\{U_i : i = 1, 2, \ldots, n\}$ such that $y_0 \notin \bigcup_{i=1}^n U_i$. But by (iii), $R[C]$ is contained in $\bigcup_{i=1}^n U_i$. Thus $R[C]$ is closed.

We next show that X/R is Hausdorff; clearly, R is the finest relation for which this can be true. It follows that the arbitrarily chosen compactification \bar{X} is comparable with an appropriate Q-compactification. The following theorem for the case that X is Hausdorff is due to Čech [2].

Theorem 4.2. Let Q be the set of all mappings of X into the unit interval $[0, 1]$, and let R be the set of restrictions $\{f : X : f \in Q\}$. Then Q separates the points in ΔX, and thus $\bar{X}^Q \supseteq \bar{X}$. If X is open in \bar{X}, then $\bar{X}^Q \cong \bar{X}$. If X is Hausdorff, then $\bar{X}^Q \cong \bar{X}$.

Proof. By Theorems 2.2 and 3.1, we need only show that Q separates the points in ΔX. Let P be the projection of \bar{X} onto the quotient space X/R. If $P(x)$ and $P(y)$ are distinct points in X/R, then there are disjoint neighborhoods U and V of $R[x]$ and $R[y]$ in X. Let $C = X - U$ and $D = X - V$. Then $R[C]$ is a closed set with $R[C] \cap R[x] = \emptyset$; $R[D]$ is a closed set with $R[D] \cap R[y] = \emptyset$, and $R[D] \cup R[C] = \bar{X}$. Therefore, $P(R[C])$ and $P(R[D])$ are closed sets in X/R with $P(x) \notin P(R[C])$, $P(y) \notin P(R[D])$, and $P(R[C]) \cup P(R[D]) = X/R$. Thus X/R is Hausdorff, and the theorem follows from Urysohn’s lemma.

Corollary 4.3. Every compactification of a locally compact Hausdorff space is a Q-compactification. Every Hausdorff compactification of a completely regular space is a Hausdorff Q-compactification.

Finally, we let s be the set of all mappings of X into the unit interval $[0, 1]$, and we consider the compactifications \bar{X}^s and \bar{X}^{hs}. Of course, \bar{X}^{hs} is only defined if X is completely regular, and it is the Stone-Čech compactification of X.

Theorem 4.4. Let \bar{X} be any compactification of X. Then $\bar{X}^s \cong \bar{X}$, and as is well known, $\bar{X}^{hs} \cong \bar{X}$ if \bar{X} is Hausdorff.

Proof. The result follows from Theorem 4.2, Corollary 2.3 and the remark following Theorem 3.1.

We have shown that if X is completely regular, then $\bar{X}^s \cong \bar{X}^{hs}$, while $\bar{X} \cong \bar{X}^{hs}$ only if X is locally compact. If X is not locally compact, then \bar{X}^s dominates a larger class of compactifications than the Stone-Čech compactification \bar{X}^{hs}. Indeed if X is not completely
regular, $\overline{X^{he}}$ is not even defined. Moreover, X is always an open subset of $\overline{X^e}$, but only when X is locally compact is it open in $\overline{X^{he}}$.

References

University of California, Los Angeles and
University of Illinois, Urbana