HYPERBOLIC SUBMANIFOLDS OF COMPLEX PROJECTION SPACE

PETER KIERNAN

In [1] Professor Kobayashi constructed an invariant pseudo-distance d_M on each complex manifold M. If the pseudo-distance d_M is a true distance, the complex manifold is said to be hyperbolic. It is known (see [1]) that if M admits a hermitian metric of strongly negative curvature then M is hyperbolic. In this paper, examples of hyperbolic manifolds are obtained by a more elementary method. In the process, it shall be shown that any covering manifold of the complement of any $2n$ hyperplanes in general position in $P_n(C)$ is not biholomorphically equivalent to a bounded domain of C^n. This gives a negative answer to a question posed by Professor Chern.

Before proceeding, it will be useful to state some of Kobayashi’s basic results concerning the pseudo-distance d_M. For further details and proofs, see [1].

Theorem 1. If $f: M \rightarrow N$ is holomorphic, then f is distance decreasing with respect to d_M and d_N. Thus if N is hyperbolic and $d_M = 0$, then f is constant. If N is hyperbolic and there exists a 1-1 holomorphic mapping $f: M \rightarrow N$, then M is hyperbolic.

Theorem 2. Let \tilde{M} be a covering manifold of M. Then \tilde{M} is hyperbolic if and only if M is hyperbolic.

Theorem 3. If M and N are hyperbolic, then $M \times N$ is hyperbolic.

Theorem 4. D^*, the unit disc in C^n, is hyperbolic. $C - \{0, 1\}$ is hyperbolic. C and $C - \{0\}$ are not hyperbolic and, in fact, $d_C = 0 = d_{C - \{0\}}$.

The following notation is necessary in order to give the examples.

Let

\[K_n = \{ \sigma = a_1 \cup a_2 \cup a_3 \mid \text{where the } a_i \text{ are distinct hyperplanes in } P_n(C) \text{ which intersect in an } n-2 \text{ dimensional subspace of } P_n(C) \}. \]

\[L_n = \{ A = \sigma_1 \cup \cdots \cup \sigma_n \mid \sigma_a = a_{a_1} \cup a_{a_2} \cup a_{a_3} \in K_n \text{ and the following conditions are satisfied:} \}

(i) For each $1 < \alpha \leq n$ there exists $\beta < \alpha$ and there exists (i, k) such that $a_{\alpha_1} = a_{\beta_k}$. Furthermore the i is unique.

(ii) If $b_{\alpha} = a_{\alpha_1} \cap a_{\alpha_2} \cap a_{\alpha_3}$, then for any set of n hyperplanes \(\{ y_1, \cdots, y_n \} \) with $b_{\alpha} \subseteq y_{\alpha} \subseteq A$, we have $y_1 \cap \cdots \cap y_n = \text{point}$.

Received by the editors January 9, 1969.
Remarks. A member of L_n is a union of n elements $\sigma_1, \ldots, \sigma_n$ of K_n which satisfy two conditions. The first condition says that exactly one of the hyperplanes of σ_a is in a previous σ_p. Thus an element of L_n is the union of $2n+1$ hyperplanes. The second condition forces the $2n+1$ hyperplanes to have a nice relative position. For $n=1$ or 2, the first condition implies the second.

Theorem 5. Let $A \in L_n$. Then $M = P_n(C) - A$ is hyperbolic.

Proof. Let $p \in M$ and $q \in M$ be such that $d_M(p, q) = 0$. Let $A = \sigma_1 \cup \cdots \cup \sigma_n$, $\sigma_a = a_{a1} \cup a_{a2} \cup a_{a3}$ and $b_a = a_{a1} \cap a_{a2} \cap a_{a3}$. Let $N_a = P_n(C) - \sigma_a$. We can choose coordinates in N_a such that

$$N_a = C^n - \{(z_1, \ldots, z_n) \mid z_n = 0 \text{ or } z_n = 1\}.$$

Define $\phi_a : N_a \to C - \{0, 1\}$ by $\phi_a(z_1, \ldots, z_n) = z_n$. Since $C - \{0, 1\}$ is hyperbolic, this says that $\phi_a(p) = \phi_a(q)$. Thus there exists a hyperplane y_a such that $\{p, q\} \subseteq y_a$ and $b_a \subseteq y_a \subseteq A$. Doing this for all a, we have $\{p, q\} \subseteq y_1 \cap \cdots \cap y_n$. By property (ii) in the definition of L_n, we have $p = q$ and therefore M is hyperbolic. This completes the proof.

The previous theorem shows that if A is the union of $2n+1$ hyperplanes in $P_n(C)$ which have the proper relative position, then $P_n(C) - A$ is hyperbolic. If $A = \sigma_1 \cup \cdots \cup \sigma_n \in L_n$ has the property that one hyperplane, say a_{11}, is common to all σ_a, then $P_n(C) - A$ is equivalent to $C - \{0, 1\} \times \cdots \times C - \{0, 1\}$. In this case, A is given in homogeneous coordinates by the equation

$$z_0 z_1 \cdots z_n (z_0 - z_1)(z_1 - z_2)(z_2 - z_3) \cdots (z_{n-1} - z_n) = 0.$$

For $n=1$ or $n=2$, this is the only example we obtain. However, for $n \geq 3$ we obtain more. For example, each of the following equations define an element of L_4.

$$z_0 \cdots z_4 (z_0 - z_1)(z_1 - z_2)(z_2 - z_3)(z_3 - z_4) = 0,$$

$$z_0 \cdots z_4 (z_0 - z_1)(z_1 - z_2)(z_2 - z_3)(z_3 - z_4)(z_4 - z_5) = 0,$$

$$z_0 \cdots z_4 (z_0 - z_1)(z_1 - z_2)(z_2 - z_3)(z_3 - z_4)(z_4 - z_5)(z_5 - z_6) = 0.$$

We now consider the complement of $2n$ hyperplanes in $P_n(C)$. Let $V = a_1 \cup \cdots \cup a_{2n}$ be the union of $2n$ hyperplanes in $P_n(C)$. We say that V satisfies property P if (after reordering the a_i if necessary):

(P) There exists points p and q and some $0 \leq k \leq 2n$ such that $p \in a_1 \cap \cdots \cap a_k$ and $q \in a_{k+1} \cap \cdots \cap a_{2n}$, and such that the line determined by p and q is not contained in any of the hyperplanes a_i.
Theorem 6. If V is the union of $2n$ hyperplanes in $P_n(C)$ and V satisfies property P, then $P_n(C) - V$ is not hyperbolic.

Proof. Property P implies that there exists a nonconstant holomorphic map of $C - \{0\}$ into $P_n(C) - V$. Thus by Theorems 1 and 4, $P_n(C) - V$ is not hyperbolic.

Corollary 1. If V is the union of $2n$ hyperplanes in general position in $P_n(C)$, then $P_n(C) - V$ is not hyperbolic.

Proof. Let $V = a_1 \cup \cdots \cup a_{2n}$, $p \in a_1 \cap \cdots \cap a_n$ and $q \in a_{n+1} \cap \cdots \cap a_{2n}$. If the line determined by p and q is contained in a_k, then $a_1 \cap \cdots \cap a_n \cap a_k \neq \emptyset$ and $a_k \cap a_{n+1} \cap \cdots \cap a_{2n} \neq \emptyset$. This is impossible since the a_i are in general position. Thus V satisfies property P.

Corollary 2. If $n \leq 5$ and V is the union of any $2n$ hyperplanes in $P_n(C)$, then $P_n(C) - V$ is not hyperbolic.

Proof. This is proved by considering the different possible ways in which the hyperplanes could intersect. For example, if $n = 2$ and $V = a_1 \cup \cdots \cup a_4$, there are three cases (up to relabelling the a_i):

1. $a_1 \cap \cdots \cap a_4 \neq \emptyset$,
2. $a_1 \cap \cdots \cap a_4 = \emptyset$ and $a_1 \cap a_2 \cap a_3 \neq \emptyset$,
3. the a_i are in general position.

In each case it is easy to show that V satisfies property P. Similar arguments work for $n = 3, 4$ or 5.

Remark. I feel that if V is the union of any $2n$ hyperplanes in $P_n(C)$, then V satisfies property P. This would imply that a minimum of $2n + 1$ hyperplanes must be removed from $P_n(C)$ in order to obtain a hyperbolic space. However, the arguments used to prove this for $n \leq 5$ do not seem to generalize.

Corollary 3. Let V be as in Theorem 6 and let \tilde{M} be a covering manifold of $P_n(C) - V$. Then any bounded holomorphic map $f: \tilde{M} \to C$ is not 1-1. In particular, \tilde{M} is not biholomorphically equivalent to a bounded domain of C^n.

Proof. Any bounded domain is hyperbolic. Theorems 2 and 6 imply that \tilde{M} is not hyperbolic. Therefore Theorem 1 implies that f is not 1-1. This completes the proof.

Let V be a complete quadrilateral in $P_3(C)$ with diagonal T. Then Corollary 2 says that $M = P_3(C) - V$ is not hyperbolic and Corollary 3 says that any covering \tilde{M} of M is not biholomorphically equivalent.
to a bounded domain in C. However, $\overline{V \cup T} \subset \mathbb{R}^2$ and therefore $P_2(C) - \overline{V \cup T}$ is equivalent to $C - \{0, 1\} \times C - \{0, 1\}$, which is covered by $D' \times D'$. These last results have been obtained independently by Wilhelm Stoll [2].

We finish with an example. Let $n \geq 2$ and let $A^d \subset \mathbb{P}_n(C)$ be the variety defined by the homogeneous equation $z_0^d + \cdots + z_n^d = 0$ where d is a positive integer. Then $M^d = \mathbb{P}_n(C) - A^d$ is not hyperbolic for any d. To see this, let U_n be the coordinate neighborhood obtained by setting $z_n = 1$. Then the map $f: C \to U_n$ defined by $f(z) = (z, (-1)^{1/d}z, 0, \cdots, 0)$ is nonconstant. Therefore M^d is not hyperbolic.

References
