ISOMETRIES BETWEEN B^*-ALGEBRAS

ALAN L. T. PATERSON

In [2], Kadison proves the following theorem:

Let A and B be C^*-algebras each of which contains an identity. Then if T is a linear isometry mapping A onto B, there exists a C^*-isomorphism τ mapping A onto B (i.e. τ is a linear isomorphism which preserves self-adjoints and power structure) and a unitary element $v \in B$ such that $T = \tau v$.

In recent years, the theory of numerical range, developed in [3], has provided techniques which have considerably simplified the proofs of certain results in the theory of B^*-algebras. The following question, posed by G. Lumer at the North British Functional Analysis Seminar held at Edinburgh in April 1968, is, therefore, natural: Can one prove the above theorem of Kadison using the techniques of the theory of numerical range? Lumer showed that such a proof can be given when the algebras concerned are commutative.

In this paper, we give a simple, intrinsic proof of Kadison's result, using certain elementary notions from the theory of numerical range.

We note that if A is a B^*-algebra with identity 1, the set

$$H = \{ x \in A : \| 1 + i\alpha x \| \leq 1 + o(\alpha), \alpha \in \mathbb{R}, \alpha \to 0 \}$$

coincides with the set of selfadjoint elements of A. This is proved by [3, Theorem 21].

In the sequel, A and B are B^*-algebras, each containing an identity 1, and T is a linear isometry mapping A onto B. A_1 and $H(A)$ denote respectively the closed unit ball and the set of hermitian elements of A. A' denotes the space of continuous linear functionals on A. $D_A(1)$ is the subset of A' given by $D_A(1) = \{ f \in A' : \| f \| = 1 = f(1) \}$. For $x \in A$, $Sp_A(x)$ denotes the spectrum of x in A.

Analogous notations will be used to denote the corresponding sets associated with B.

Lemma 1. Let v be an extreme point of B_1. Then v^*v is an idempotent.

Proof. The proof is contained in [2, Theorem 1]. It is shown that, if C is the closed subalgebra in B generated by 1 and v^*v, then v^*v, regarded as a function on the carrier space of C, can assume no values different from 0 and 1. The result follows immediately.

Received by the editors January 17, 1969.

570
Lemma 2. Let \(u \) be a unitary element of \(A \). Then \(Tu \) is neither a left nor a right divisor of zero in \(B \).

Proof. Let \(u \) be a unitary element of \(A \) and let \(x \in B \) for which \((Tu)x = 0\). Since \(T \) maps \(A \) onto \(B \), \(\exists y \in A \) such that \(x = (Ty)^* \). Hence \((Tu)(Ty)^* = 0 = (Ty)(Tu)^* \). Let \(\alpha \in \mathbb{C} \). Then
\[
\|u + \alpha y\|^2 = \|(Tu + \alpha Ty)^*\|^2 = \|(Tu + \alpha Ty)((Tu)^* + \alpha(Ty)^*)\|
\]
\[
= \|(Tu)(Tu)^* + \alpha \|^2(Ty)(Ty)^*\| \leq \|Tu\|^2 + |\alpha|^2\|Ty\|^2.
\]
This gives \(\|u + \alpha y\| \leq (1 + |\alpha|^2)^{1/2} \), where \(k = \|Ty\|^2 \). Since \(u \) is unitary, \(\|1 + \alpha u^*y\| = \|u + \alpha y\| \leq (1 + |\alpha|^2)^{1/2} \). It follows that as \(\alpha \to 0 \) with \(\alpha \in \mathbb{R} \), we have both
\[
\|1 + \alpha u^*y\| \leq 1 + o(\alpha), \quad \|1 + i\alpha u^*y\| \leq 1 + o(\alpha).
\]
Therefore \(u^*y \in H(A) \cap iH(A) = (0) \).

Since \(u^* \) is regular, \(y = 0 \). Thus \(x = (Ty)^* = 0 \). Hence, \(Tu \) is not a left divisor of zero in \(B \), and it may be similarly shown that \(Tu \) is not a right divisor of zero in \(B \).

It is obvious that Lemma 2 remains true if \(Tu \) is replaced by \((Tu)^*\) in its statement.

Lemma 3. Let \(u \) be a unitary element of \(A \). Then \(Tu \) is a unitary element of \(B \).

Proof. Since \(F \) is a linear isometry of \(A \) onto \(B \), \(T \) maps the extreme points of \(A \) onto the extreme points of \(B \). By [1, Theorem 3], \(u \) is a vertex, and hence an extreme point, of \(A \). Thus \(Tu \) is an extreme point of \(B \).

Let \(p = (Tu)^*Tu \). It follows easily from Lemma 2 that \(p \) is not a divisor of zero.

Now, since by Lemma 1, \(p \) is an idempotent in \(B \), we have \(p(p - 1) = 0 \). Hence \(p = 1 \), i.e. \((Tu)^*Tu = 1\).

Now, if \(y \in B \) is an extreme point of \(B \), \(y^* \) is also an extreme point of \(B \). Hence \((Tu)^* \) is an extreme point of \(B \). Applying the above argument to \((Tu)^* \) instead of to \(Tu \), it is clear that \((Tu)(Tu)^* = 1\). Hence \(Tu \) is a unitary point of \(B \).

Theorem. Let \(A \) and \(B \) be \(B^*-\)algebras each containing an identity \(1 \). Then if \(T \) is a linear isometry mapping \(A \) onto \(B \), there exists a unitary element \(v \) of \(B \) and a \(C^*-\)isomorphism \(\tau \) of \(A \) onto \(B \) such that \(T = vr \).

Proof. Let \(T \) be a linear isometry of \(A \) onto \(B \). By Lemma 3, \(T1 \) is a unitary element of \(B \). Let \(v = T(1) \), and define the mapping \(\tau \) of \(A \) into \(B \) by \(\tau = v^*T \). \(\tau \) is clearly linear, and maps \(A \) onto \(B \). Further,
since \(v^* \) is unitary, \(\| \tau(x) \| = \| v^* T(x) \| = \| Tx \| = \| x \| \) for \(x \) in \(A \). Thus \(\tau \) is an isometry, and \(\tau(1) = v^* v = 1 \).

Since \(T = v \tau \), if we can show that \(\tau \) is a \(C^* \)-isomorphism, the theorem will be proved. Let \(h \in H(A) \). Then

\[
\| 1 + i\alpha \tau(h) \| = \| 1 + i\alpha h \| \leq 1 + o(\alpha) \quad (\alpha \in \mathbb{R}, \alpha \to 0).
\]

Thus \(\tau(h) \in H(B) \) and \(\tau \) is a \(* \)-mapping.

Finally, we must prove that \(\tau(x^2) = [\tau(x)]^2 \) (\(x \in A \)). Let \(h \in H(A) \), \(\alpha \in \mathbb{R} \). Then \(e^{i\alpha}h \) is a unitary element of \(A \). By Lemma 3 applied to \(\tau \), \(\tau(e^{i\alpha}h) \) is a unitary element of \(B \), i.e. \(\tau(e^{i\alpha}) \tau(e^{-i\alpha}) = 1 \).

Thus \([1 + i\alpha \tau(h) - \alpha^2 \tau(h^2)/2][1 - i\alpha \tau(h) - \alpha^2 \tau(h^2)/2] = 1 + O(\alpha^2) \) as \(\alpha \to 0 \), using the fact that \(\tau \) is continuous and \(\tau(1) = 1 \).

Hence \(1 + \alpha^2 \left([\tau(h)]^2 - \tau(h^2) \right) = 1 + O(\alpha^2) \) as \(\alpha \to 0 \); i.e. \([\tau(h)]^2 - \tau(h^2) = O(\alpha) \) as \(\alpha \to 0 \); \([\tau(h)]^2 = \tau(h^2) \).

Now let \(x \in A \), \(x = h + ik \), where \(h, k \in H(A) \). Since \([\tau(h+k)]^2 = \tau(h+k)^2 \), we have

\[
\tau(hk + kh) = \tau(h) \tau(k) + \tau(k) \tau(h).
\]

Hence \(\tau(x^2) = \tau(h^2 - k^2 + i(hk + kh)) = [\tau(x)]^2 \) (\(x \in A \)). Thus \(\tau \) is a \(C^* \)-isomorphism.

Note. The converse of the above theorem was also proved by Kadison [2], i.e. if \(\tau \) is a \(C^* \)-isomorphism mapping \(A \) onto \(B \) and \(v \) is a unitary element in \(B \), then \(T = v \tau \) is a linear isometry of \(A \) onto \(B \). This result is an easy consequence of [4, Corollary 1].

I wish to express my gratitude to Professor F. F. Bonsall for his encouragement and advice. I am also indebted to Professor G. Lumer for helpful suggestions.

References

University of Edinburgh, Scotland