THE SPECTRUM OF A LINEAR OPERATOR UNDER PERTURBATION BY CERTAIN COMPACT OPERATORS

KENNETH K. WARNER

Let T be a bounded linear operator on a Banach space X. A sub-
set of the spectrum of T which is invariant under certain compact
perturbation of T is studied. It consists of the spectrum of T with
finite-dimensional poles deleted. In the case of a bounded operator,
it coincides with the essential spectrum as defined by F. E. Browder
[1]. It is characterized as a set considered by Caradus [2]. A formula
of the spectral radius type is proved. Furthermore, a spectral map-
ing theorem is valid.

The notation is that of Taylor [5]. Let $R(T)$ denote the range of T
and $N(T)$ the nullspace of T, i.e., $N(T) = \{x: Tx = 0\}$. The dimension
of $N(T)$, $n(T)$, is called the nullity of T and the codimension of $R(T)$,
d(T), the defect of T. Suppose for some integer k, $N(T^k) = N(T^{k+1})$;
then the ascent, $a(T)$, is defined as the smallest value of k for which
this is true. The smallest integer for which $R(T^k) = R(T^{k+1})$ is
called the descent of T and is denoted by $b(T)$. For the operator
$\lambda - T$, $n(\lambda - T)$ is abbreviated to $n(\lambda)$, etc. $B(X)$ will denote the
bounded linear operators, $C(X)$ the compact linear operators. $A \supset B$
means $AB = BA = 0$. Let $[T] \in B(X)/C(X)$; then $\sigma([T])$ denotes the
spectrum of $[T]$ as an element of that Banach algebra. For a linear
operator T, let $P(T) = \{C \in C(X): T - C \in \mathbb{C}\}$ and $Q(T) = \{D \in C(X):$
$DT = TD\}$. The object of this paper is to study the sets

$$\sigma_P(T) = \bigcap_{C \in P(T)} \sigma(T - C), \quad \sigma_Q(T) = \bigcap_{D \in Q(T)} \sigma(T - D).$$

The complement of $\sigma_P(T)$ will be denoted by $\rho_P(T)$, and the comple-
ment of $\sigma_Q(T)$ will be denoted by $\rho_Q(T)$. When no confusion will arise,
the T will be suppressed.

Lemma 1. σ_P is a closed set, and $\sigma([T]) \subseteq \sigma_P \subseteq \sigma(T)$.

Proof. σ_P is closed because it is the intersection of closed sets.
Since $0 \in P$, then $\sigma_P \subseteq \sigma(T - 0) = \sigma(T)$.

Let $\lambda \in \rho_P$; then there is a $C \in P$ such that $\lambda \in \rho(T - C)$. Thus,
$R_\lambda(\lambda - T + C) = I$, where $R_\lambda = (\lambda - T + C)^{-1}$, the resolvent operator.
Then $[R_\lambda][\lambda - T] = [\lambda - T][R_\lambda] = [I]$. This implies that $\lambda \in \rho([T])$,
and $\rho_P \subseteq P([T])$. Hence, $\sigma([T]) \subseteq \sigma_P$.

Received by the editors March 28, 1967 and, in revised form, November 14, 1968.
Lemma 2. Let \(T \in B(X) \). Suppose \(\lambda_0 \neq 0 \) is an isolated point of \(\sigma(T) \). Let \(E_0 \) be the spectral projection associated with \(\lambda_0 \). Then \(T - TE_0 \perp TE_0 \) and \(\lambda_0 \in \sigma(T - TE_0) \).

Proof. The operational calculus for \(T \) (see [4]) implies that \(TE_0 = E_0 T \) and \((I - E_0)E_0 = E_0(I - E_0) = 0 \). These statements give \(T - TE_0 \perp TE_0 \).

Let \(f(\lambda) = \lambda \) on a neighborhood of \(\sigma(T) \sim \{ \lambda_0 \} \) and \(f(\lambda) = 0 \) on a neighborhood of \(\{ \lambda_0 \} \). Then \(f \in \mathfrak{A}_0(T) \), and \(f(T) = T - TE_0 \). The spectral mapping theorem implies \(\lambda_0 \in \sigma(T - TE_0) \).

Theorem 1. (a) \(\rho_{F(T)} \sim \{ 0 \} = \{ \lambda : n(\lambda) = d(\lambda) \text{ and } \delta(\lambda) = \alpha(\lambda) \} \sim \{ 0 \} \); (b) \(\rho_{O(T)} = \{ \lambda : n(\lambda) = d(\lambda) \text{ and } \delta(\lambda) = \alpha(\lambda) \} \).

Proof. Let \(\lambda \in \rho_0 \); then there is a \(D \in Q \) such that \(\lambda \in \rho(T - D) \). We can write \(\lambda - T = (\lambda - (T - D)) + (-D) \). Let \(U = \lambda - (T - D) \). Then \(U \) has the properties that it has a bounded inverse, \((\lambda - T) - U \) is compact, and \((\lambda - T)U = U(\lambda - T) \) (since \(TD = DT \)). Thus, Theorem 6.3 of Yood [6] implies that \(n(\lambda) = d(\lambda) \) and \(\alpha(\lambda) = \delta(\lambda) \). Also, \(\rho_F \subset \rho_0 \).

Let \(\lambda \in \sigma(T) \) such that \(n(\lambda) = d(\lambda) \) and \(\delta(\lambda) = \alpha(\lambda) \). Now Theorem 9.4 of Taylor [5] shows that \(\lambda \) is an isolated point of \(\sigma(T) \). Then by Corollary 9.3 of Taylor [5], we conclude that \(E_\lambda \), the associated spectral projection, is a finite-dimensional operator. Thus, \(TE_\lambda \) is compact. If \(\lambda \neq 0 \), then Lemma 2 implies \(T - TE_\lambda \perp TE_\lambda \) and \(\lambda \in \sigma(T - TE_\lambda) \). Hence \(\lambda \in \rho_F \sim \{ 0 \} \). Thus we have proved (a).

To prove (b), it suffices from the above to consider \(\lambda = 0 \). For \(\mu \neq 0 \), \(T_\mu = \mu - T \) has a finite-dimensional pole at \(\mu \), and the associated spectral projection \(E_\mu = E_0 \), by Theorem 5.71D of Taylor [4]. By Lemma 2, \(\mu \in \sigma(T_\mu - T_\mu E_0) \). Hence \((\mu - (T_\mu - T_\mu E_0))^{-1} = (T_\mu + T_\mu E_0)^{-1} \) exists, and \(-T_\mu E_0 \in Q \). This proves (b).

Caradus [2] defined the Riesz region, \(\mathfrak{R}_T \), of \(T \) to be \(\{ \lambda : n(\lambda) \text{ and } \delta(\lambda) \text{ are finite} \} \); the Fredholm region, \(\mathfrak{F}_T \), to be \(\{ \lambda : n(\lambda) \text{ and } d(\lambda) \text{ are finite} \} \).

Corollary 1. \(\rho_{O(T)} = \mathfrak{R}_T \cap \mathfrak{F}_T \). Hence \(\mathfrak{R}_T \cap \mathfrak{F}_T \) is open.

Proof. Theorem 6.1 of Yood [6] or Lemma 2 of Caradus [2] imply that \(\mathfrak{R}_T \cap \mathfrak{F}_T = \{ n(\lambda) = d(\lambda) \text{ and } \alpha(\lambda) = \delta(\lambda) \} \).

Theorem 1 completes the proof.

Corollary 2. \(\lambda \in \sigma_0(T) \) if and only if either \(\lambda \) is a limit point of \(\sigma(T) \), or \(\lambda \) is an isolated point whose associated spectral projection is infinite dimensional.
Proof. Theorem 1, and Theorem 9.3 and Corollary 9.3 of Taylor [5], imply that the points of $\rho_0 \cap \sigma(T)$ are isolated points whose spectral projections are finite-dimensional operators.

Let $r = \sup |\lambda|$ for $\lambda \in \sigma_P(T)$. Then the following spectral radius type theorem is valid.

Theorem 2.

\[r = \lim_{n \to \infty} \left\{ \inf_{c \in P} \| T^n - C^n \| \right\}^{1/n}. \]

Proof. Since $T - C \perp C$, we have by induction $(T - C)^n = T^n - C^n$. Let $r(A)$ be the spectral radius of $A \in B(X)$. It is well known that $r(A^n) = (r(A))^n$ and $\| A^n \| \geq (r(A))^n$. Hence, for $C \in P$

\[\| (T - C)^n \| \geq (r(T - C))^n \geq r^n. \]

For each n,

\[\left\{ \inf_{c \in P} \| T^n - C^n \| \right\}^{1/n} \geq r. \]

Let $a > r$. Pick p such that $a > p > r$. Then if $|\lambda| > p$, we have $n(\lambda) = d(\lambda)$ and $\alpha(\lambda) = \delta(\lambda)$. If $\lambda \in \sigma(T)$ and $|\lambda| > p$, then Theorem 9.4 of Taylor [5] implies that λ is an isolated point of $\sigma(T)$, and Corollary 9.3 of Taylor [5] that the associated spectral projection is a finite dimensional operator.

There can only be a finite number of such points $\lambda \in \sigma(T)$ and $|\lambda| > p$ (for Theorem 9.4 of Taylor [5] would imply that a limit point of such points would be isolated). Denote these points by $\{ \lambda_i \}$.

Let E_i be the finite-dimensional projection associated with λ_i. Then the operational calculus for T gives $C = T(\sum_i E_i) \in P$, and the spectral mapping theorem that $\lambda_i \in \sigma(T - C)$ for $i = 1, \ldots, n$. Hence, $\rho \geq r(T - C)$.

Thus, by the spectral radius theorem there is an N such that $a > \| (T - C)^n \|^{1/n} \geq r$ for $n \geq N$. Thus $a^n > \| (T - C)^n \| \geq r^n$. But $\| (T - C)^n \| \geq \| T^n - C^n \| \geq \inf_{c \in P} \| T^n - C^n \|$. Hence,

\[a^n > \inf_{c \in P} \| T^n - C^n \| \geq r^n, \quad \text{or} \quad a > \left\{ \inf_{c \in P} \| T^n - C^n \| \right\}^{1/n} \geq r, \]

which completes the proof.

The norm in the Banach algebra $B(X)/C(X)$ is given by $K(T) = \inf_{C \in C} \| T - C \|$ where $C \subseteq C(X)$. The next theorem shows the spectral radius of an element of $B(X)/C(X)$ is r.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Theorem 3. For any $T \in B(X)$,$$
r = \lim_{n \to \infty} (K(T^n))^{1/n}.
$$

Proof. Let $s = \lim_{n \to \infty} (K(T^n))^{1/n}$. Then s is the spectral radius of the element T in $B(X)/C(X)$. Since $G = \{ \lambda : |\lambda| > s \}$ is an open connected set, Theorem 3.3 and its corollary of Gohberg and Krein [3] imply that $\sigma(T) \cap G$ consists of isolated points of $\sigma(T)$ such that $n(\lambda) < \infty$. Hence, Corollary 9.3 of Taylor [5] implies that the spectral projections associated with each of these is finite dimensional. Let l be arbitrary and $l > s$. Then there are only a finite number of points $\lambda \in \sigma(T)$ and $|\lambda| \geq l$. Let σ denote the spectral set consisting of these points. Let E_σ be the spectral projection associated with σ. Then, as before, $T - TE_\sigma$ has spectrum inside the circle $|\lambda| = l$. TE_σ is a finite dimensional operator. Thus $l > r$. Lemma 1 implies that $r \geq s$. Hence $r = s$.

The operational calculus of an operator T allows one to assign an operator $f(T)$ for every function f analytic on a neighborhood of $\sigma(T)$ (see Taylor [4]). The following type of "spectral mapping" theorem is valid.

Theorem 4. Let f be analytic on an open set containing $\sigma(T)$. Suppose for each λ_0 that $\{ \lambda : f(\lambda) = f(\lambda_0) \}$ is finite. Then $f(\sigma_0(T)) = \sigma_0(f(T))$.

Proof. Suppose $\lambda_0 \in \sigma_0(T)$. Since the spectral mapping theorem implies that $f(\sigma(T)) = \sigma(f(T))$, $f(\lambda_0)$ is either a limit point of $\sigma(f(T))$ or an isolated point. If $f(\lambda_0)$ is a limit point, Corollary 2 implies that $f(\lambda_0) \in \sigma_0(f(T))$. If $f(\lambda_0)$ is isolated, then Theorem 5.71D of Taylor [4] implies that $\sigma = \{ \lambda : f(\lambda) = f(\lambda_0) \} \cap \sigma(T)$ is a finite spectral set of T, and the spectral projection associated with σ and T, $E_\sigma(T)$, equals that associated with $f(\lambda_0)$ and $F_{f(\lambda_0)}(f(T))$, i.e. $E_\sigma(T) = F_{f(\lambda_0)}(f(T))$. Since σ is a finite spectral set, this implies that λ_0 is an isolated point. Corollary 2 implies that E_{λ_0} is infinite dimensional. Hence $F_{f(\lambda_0)}$ is infinite dimensional. Thus $f(\lambda_0) \in \sigma_0(f(T))$, or $f(\sigma_0(T)) \subset \sigma_0(f(T))$.

Suppose that $\mu \in \sigma_0(f(T))$. If μ is a limit point of $\sigma(f(T))$, then since $f(\sigma(T)) = \sigma(f(T))$, there is a limit point λ of $\sigma(T)$ such that $f(\lambda) = \mu$. Corollary 2 implies that $\lambda \in \sigma_0(T)$. If μ is isolated, then, as before, $\sigma = \{ \lambda : f(\lambda) = \mu \} \cap \sigma(T)$ is a nonempty finite spectral set such that $E_\sigma(T) = F_\mu(f(T))$. Since points of σ are isolated, E_σ is the finite sum of the spectral projections associated with the points of σ. Since F_μ is infinite dimensional, one of these projections must be infinite dimensional. Thus there is a $\lambda \in \sigma$ such that $f(\lambda) = \mu$ and $\lambda \in \sigma_0(T)$. Thus, $f(\sigma_0(T)) = \sigma_0(f(T))$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Remark. The above theorems hold if \(P(T) \) and \(Q(T) \) are replaced with finite-dimensional operators that satisfy the defining conditions for these sets.

References

California State College, Long Beach