THE SPECTRUM OF A LINEAR OPERATOR UNDER PERTURBATION BY CERTAIN COMPACT OPERATORS

KENNETH K. WARNER

Let T be a bounded linear operator on a Banach space X. A subset of the spectrum of T which is invariant under certain compact perturbation of T is studied. It consists of the spectrum of T with finite-dimensional poles deleted. In the case of a bounded operator, it coincides with the essential spectrum as defined by F. E. Browder [1]. It is characterized as a set considered by Caradus [2]. A formula of the spectral radius type is proved. Furthermore, a spectral mapping theorem is valid.

The notation is that of Taylor [5]. Let $R(T)$ denote the range of T and $N(T)$ the nullspace of T, i.e., $N(T) = \{x :Tx = 0\}$. The dimension of $N(T)$, $n(T)$, is called the nullity of T and the codimension of $R(T)$, $d(T)$, the defect of T. Suppose for some integer k, $N(T^k) = N(T^{k+1})$; then the ascent, $\alpha(T)$, is defined as the smallest value of k for which this is true. The smallest integer for which $R(T^k) = R(T^{k+1})$ is called the descent of T and is denoted by $\delta(T)$. For the operator $\lambda - T$, $n(\lambda - T)$ is abbreviated to $n(\lambda)$, etc. $B(X)$ will denote the bounded linear operators, $C(X)$ the compact linear operators. $A \perp B$ means $AB = BA = 0$. Let $[T] \in B(X)/C(X)$; then $\sigma([T])$ denotes the spectrum of $[T]$ as an element of that Banach algebra. For a linear operator T, let $P(T) = \{C \in C(X) : T - C \perp C\}$ and $Q(T) = \{D \in C(X) : DT = TD\}$. The object of this paper is to study the sets

$$\sigma_{P(T)} = \bigcap_{C \in P(T)} \sigma(T - C), \quad \sigma_{Q(T)} = \bigcap_{D \in Q(T)} \sigma(T - D).$$

The complement of $\sigma_{P(T)}$ will be denoted by $\rho_{P(T)}$, and the complement of $\sigma_{Q(T)}$ will be denoted by $\rho_{Q(T)}$. When no confusion will arise, the T will be suppressed.

Lemma 1. σ_{P} is a closed set, and $\sigma([T]) \subseteq \sigma_{P} \subseteq \sigma(T)$.

Proof. σ_{P} is closed because it is the intersection of closed sets. Since $0 \in P$, then $\sigma_{P} \subseteq \sigma(T - 0) = \sigma(T)$.

Let $\lambda \in \rho_{P}$; then there is a $C \in P$ such that $\lambda \in \rho(T - C)$. Thus, $R_{\lambda}(\lambda - T + C) = I$, where $R_{\lambda} = (\lambda - T + C)^{-1}$, the resolvent operator. Then $[R_{\lambda}][\lambda - T] = [\lambda - T][R_{\lambda}] = [I]$. This implies that $\lambda \in \rho([T])$, and $\rho_{P} \subseteq \rho([T])$. Hence, $\sigma([T]) \subseteq \sigma_{P}$.

Received by the editors March 28, 1967 and, in revised form, November 14, 1968.

667
Lemma 2. Let $T \in B(X)$. Suppose $\lambda_0 \neq 0$ is an isolated point of $\sigma(T)$. Let E_0 be the spectral projection associated with λ_0. Then $T - TE_0$ and $\lambda_0 \notin \sigma(T - TE_0)$.

Proof. The operational calculus for T (see [4]) implies that $TE_0 = E_0T$ and $(I - E_0)E_0 = E_0(I - E_0) = 0$. These statements give $T - TE_0$.

Let $f(\lambda) = \lambda$ on a neighborhood of $\sigma(T) \sim \{\lambda_0\}$ and $f(\lambda) = 0$ on a neighborhood of $\{\lambda_0\}$. Then $f \in \mathcal{H}_\omega(T)$, and $f(T) = T - TE_0$. The spectral mapping theorem implies $\lambda_0 \notin \sigma(T - TE_0)$.

Theorem 1. (a) $\rho_{F(T)} \sim \{0\} = \{\lambda : n(\lambda) = d(\lambda) \text{ and } \delta(\lambda) = \alpha(\lambda)\}$

(b) $\rho_{Q(T)} = \{\lambda : n(\lambda) = d(\lambda) \text{ and } \delta(\lambda) = \alpha(\lambda)\}$

Proof. Let $\lambda \in \rho_Q$; then there is a $D \in Q$ such that $\lambda \in \rho(T - D)$. We can write $\lambda - T = (\lambda - (T - D)) + (D - D)$. Let $U = \lambda - (T - D)$. Then U has the properties that it has a bounded inverse, $(\lambda - T - U)$ is compact, and $(\lambda - T - U)U = U(\lambda - T) = TD = DT$ (since $TD = DT$). Thus, Theorem 6.3 of Yood [6] implies that $n(\lambda) = d(\lambda)$ and $\alpha(\lambda) = \delta(\lambda)$. Also, $\rho_F \subset \rho_Q$.

Let $\lambda \in \sigma(T)$ such that $n(\lambda) = d(\lambda)$ and $\alpha(\lambda) = \delta(\lambda)$. Now Theorem 9.4 of Taylor [5] shows that λ is an isolated point of $\sigma(T)$. Then by Corollary 9.3 of Taylor [5], we conclude that E_λ, the associated spectral projection, is a finite-dimensional operator. Thus, TE_λ is compact. If $\lambda \neq 0$, then Lemma 2 implies $T - TE_\lambda$.

To prove (b), it suffices from the above to consider $\lambda = 0$. For $\mu \neq 0$, $\mu \in \mathcal{F}$ has a finite-dimensional pole at μ, and the associated spectral projection $E_\mu = E_0$, by Theorem 5.71D of Taylor [4]. By Lemma 2, $\mu \in \sigma(T_\mu - T_\mu E_0)$. Hence $(\mu - (T_\mu - T_\mu E_0))^{-1} = (T + T_\mu E_0)^{-1}$ exists, and $T_\mu E_0 \in Q$. This proves (b).

Caradus [2] defined the Riesz region, \mathcal{R}_T, of T to be $\{\lambda : n(\lambda)$ and $\delta(\lambda)$ are finite $\}$; the Fredholm region, \mathcal{FR}_T, to be $\{\lambda : n(\lambda)$ and $d(\lambda)$ are finite $\}$.

Corollary 1. $\rho_{Q(T)} = \mathcal{R}_T \cap \mathcal{FR}_T$. Hence $\mathcal{R}_T \cap \mathcal{FR}_T$ is open.

Proof. Theorem 6.1 of Yood [6] or Lemma 2 of Caradus [2] imply that $\mathcal{R}_T \cap \mathcal{FR}_T = \{n(\lambda) = d(\lambda) \text{ and } \alpha(\lambda) = \delta(\lambda)\}$.

Theorem 1 completes the proof.

Corollary 2. $\lambda \in \sigma_Q(T)$ if and only if either λ is a limit point of $\sigma(T)$, or λ is an isolated point whose associated spectral projection is infinite dimensional.
Theorem 2.
\[r = \lim_{n} \left\{ \inf_{C \in P} \left\| T^{n} - C^{n} \right\| \right\}^{1/n}. \]

Proof. Since \(T - C \perp C \), we have by induction \((T - C)^{n} = T^{n} - C^{n} \).

Let \(r(A) \) be the spectral radius of \(A \in B(X) \). It is well known that \(r(A_{n}) = (r(A))^{n} \) and \(\left\| A^{n} \right\| \geq (r(A))^{n} \). Hence, for \(C \in P \)

\[\left\| (T - C)^{n} \right\| \geq (r(T - C))^{n} \geq r^{n}. \]

For each \(n \),

\[\left\{ \inf_{C \in P} \left\| T^{n} - C^{n} \right\| \right\}^{1/n} \geq r. \]

Let \(a > r \). Pick \(p \) such that \(a > p > r \). Then if \(\left| \lambda \right| > p \), we have \(n(\lambda) = d(\lambda) \) and \(\alpha(\lambda) = \delta(\lambda) \). If \(\lambda \in \sigma(T) \) and \(\left| \lambda \right| > p \), then Theorem 9.4 of Taylor [5] implies that \(\lambda \) is an isolated point of \(\sigma(T) \), and Corollary 9.3 of Taylor [5] that the associated spectral projection is a finite dimensional operator.

There can only be a finite number of such points \(\lambda \in \sigma(T) \) and \(\left| \lambda \right| > p \) (for Theorem 9.4 of Taylor [5] would imply that a limit point of such points would be isolated). Denote these points by \(\{ \lambda_{i} \}_{n}^{n} \). Let \(E_{i} \) be the finite-dimensional projection associated with \(\lambda_{i} \). Then the operational calculus for \(T \) gives \(C = T(\sum_{i} E_{i}) \in P \), and the spectral mapping theorem that \(\lambda_{i} \in \sigma(T - C) \) for \(i = 1, \ldots, n \). Hence, \(p \geq r(T - C) \).

Thus, by the spectral radius theorem there is an \(N \) such that \(a > \left\| (T - C)^{n} \right\|^{1/n} \geq r \) for \(n \geq N \). Thus \(a^n > \left\| (T - C)^{n} \right\| \geq r^n \). But \(\left\| (T - C)^{n} \right\| \geq \left\| T^n - C^n \right\| \geq \inf_{C \in P} \left\| T^n - C^n \right\| \). Hence,

\[a^n > \inf_{C \in P} \left\| T^n - C^n \right\| \geq r^n, \quad \text{or} \quad a > \left\{ \inf_{C \in P} \left\| T^n - C^n \right\| \right\}^{1/n} \geq r, \]

which completes the proof.

The norm in the Banach algebra \(B(X)/C(X) \) is given by \(K(T) = \inf_{C \in C(X)} \left\| T - C \right\| \) where \(C \in C(X) \). The next theorem shows the spectral radius of an element of \(B(X)/C(X) \) is \(r \).
Theorem 3. For any $T \in B(X)$,
\[r = \lim_{n \to \infty} |K(T^n)|^{1/n}. \]

Proof. Let $s = \lim_{n \to \infty} |K(T^n)|^{1/n}$. Then s is the spectral radius of the element $[T]$ in $B(X)/C(X)$. Since $G = \{ \lambda : |\lambda| > s \}$ is an open connected set, Theorem 3.3 and its corollary of Gohberg and Krein [3] imply that $\sigma(T) \cap G$ consists of isolated points of $\sigma(T)$ such that $n(\lambda) < \infty$. Hence, Corollary 9.3 of Taylor [5] implies that the spectral projections associated with each of these is finite dimensional. Let l be arbitrary and $l > s$. Then there are only a finite number of points $\lambda \in \sigma(T)$ and $|\lambda| \geq l$. Let σ denote the spectral set consisting of these points. Let E_σ be the spectral projection associated with σ. Then, as before, $T - TE_\sigma$ has spectrum inside the circle $|\lambda| = l$. TE_σ is a finite dimensional operator. Thus $l > r$. Lemma 1 implies that $r \geq s$. Hence $r = s$.

The operational calculus of an operator T allows one to assign an operator $f(T)$ for every function f analytic on a neighborhood of $\sigma(T)$ (see Taylor [4]). The following type of "spectral mapping" theorem is valid.

Theorem 4. Let f be analytic on an open set containing $\sigma(T)$. Suppose for each λ_0 that $\{ \lambda : f(\lambda) = f(\lambda_0) \}$ is finite. Then $f(\sigma_q(T)) = \sigma_q(f(T))$.

Proof. Suppose $\lambda_0 \in \sigma_q(T)$. Since the spectral mapping theorem implies that $f(\sigma(T)) = \sigma(f(T))$, $f(\lambda_0)$ is either a limit point of $\sigma(f(T))$ or an isolated point. If $f(\lambda_0)$ is a limit point, Corollary 2 implies that $f(\lambda_0) \in \sigma_q(f(T))$. If $f(\lambda_0)$ is isolated, then Theorem 5.71D of Taylor [4] implies that $\sigma = \{ \lambda : f(\lambda) = f(\lambda_0) \} \cap \sigma(T)$ is a finite spectral set of T, and the spectral projection associated with σ and T, $E_\sigma(T)$, equals that associated with $f(\lambda_0)$ and $F_f(\lambda_0)(f(T))$, i.e. $E_\sigma(T) = F_f(\lambda_0)(f(T))$. Since σ is a finite spectral set, this implies that λ_0 is an isolated point. Corollary 2 implies that E_λ is infinite dimensional. Hence $F_f(\lambda_0)$ is infinite dimensional. Thus $f(\lambda_0) \in \sigma_q(f(T))$, or $f(\sigma_q(T)) \subseteq \sigma_q(f(T))$.

Suppose that $\mu \in \sigma_q(f(T))$. If μ is a limit point of $\sigma(f(T))$, then since $\sigma(f(T)) = \sigma(f(T))$, there is a limit point λ of $\sigma(T)$ such that $f(\lambda) = \mu$. Corollary 2 implies that $\lambda \in \sigma_q(T)$. If μ is isolated, then, as before, $\sigma = \{ \lambda : f(\lambda) = \mu \} \cap \sigma(T)$ is a nonempty finite spectral set such that $E_\sigma(T) = F_\sigma(f(T))$. Since points of σ are isolated, E_σ is the finite sum of the spectral projections associated with the points of σ. Since F_μ is infinite dimensional, one of these projections must be infinite dimensional. Thus there is a $\lambda \in \sigma$ such that $f(\lambda) = \mu$ and $\lambda \in \sigma_q(T)$. Thus, $f(\sigma_q(T)) = \sigma_q(f(T))$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Remark. The above theorems hold if $P(T)$ and $Q(T)$ are replaced with finite-dimensional operators that satisfy the defining conditions for these sets.

References