TAMING A SURFACE BY PIERCING WITH DISKS

W. T. Eaton

In [3] and [2], respectively, Bing proves the following two theorems.

Theorem 1. A 2-sphere S in E^3 is tame from complementary domain U if and only if U is 1-ULC.

Theorem 2. If S is a 2-sphere in E^3 and U is a complementary domain of S then there exists a 0-dimensional F, set $F \subseteq S$ such that $U \cup F$ is 1-ULC. Furthermore if $\{X_i\}$ is a sequence of sets in S, each of which is either a tame finite graph or a tame Sierpinski curve, then F may be chosen in $S - \bigcup X_i$.

The above two theorems suggest a procedure for showing that a given condition restricting the embedding of S implies S is tame from U. Namely, it may be possible to use the condition to slightly adjust a map f from a disk D into $U \cup F$ so that the new image of D lies entirely in U while $f|_{\partial D}$ is unaltered. The facts that $f(D) \cap F$ is compact 0-dimensional and F lies in $S - \bigcup X_i$ may also be helpful while adjusting f.

The above technique is employed in this paper to answer in the affirmative the following question asked in [1] and [5]. Is a 2-sphere in E^3 tame if it can be pierced at each arc with a tame disk? Other illustrations of this procedure may be found in [7] and [8].

Definition. A disk D is said to pierce sphere S at arc A if $\partial A \subseteq \partial D$, $\operatorname{Int} A \subseteq \operatorname{Int} D$ and the two components of $D - A$ lie in different complementary domains of S.

Definition. If J is a simple closed curve in 2-sphere S and U is a complementary domain of S then J can be collared from U by an annulus such that $J \cup \partial D$ and $A - J \subseteq U$.

The reader is referred to [2] and [3] for definitions of other terms used in this paper.

Theorem 3. If S is a 2-sphere in E^3 then S is tame if and only if each simple closed curve in S can be collared from each complementary domain of S by a tame annulus.

Presented to the Society, April 20, 1968 under the title Tameness of certain types of spheres; received by the editors November 21, 1968.

1 Work on this paper supported in part by NSF Grant GP-8888.
Proof. Let U be a complementary domain of S. We will show that U is 1-ULC and apply Theorem 1 to conclude that S is tame from U. Suppose $\varepsilon > 0$, then it follows from Theorem 2 that there exists a $\delta > 0$ such that if f is a map of the boundary of a disk D into a δ-subset in U then f may be extended to D so that

1. $f(D)$ is an $\varepsilon/2$ subset of \overline{U},
2. $f(D) \cap S$ is 0-dimensional, and
3. $f(D) \cap S \subseteq \text{Int } A$ where A is an $\varepsilon/2$-annulus in S.

It follows from (2) that there exists a homeomorphism h of $\{(x, y) | 1 \leq x^2 + y^2 \leq 4\}$ onto A such that the arc

$$B = h(\{(x, y) | 1 \leq x \leq 2, y = 0\})$$

misses $f(D)$. From the hypothesis there exists a disk C that pierces S at B and also misses $f(D)$. It follows from (1) and (3) that there exists an open set N such that $N \cap S = \text{Int } A$, $N \cap (f(Bd D) \cup Bd C) = \phi$, and $\text{Diam } f(D) \subseteq N < \varepsilon$. The proof will be completed by adjusting the singular disk $f(D)$ in N so that the new image of D lies in U.

It follows from the hypothesis that for each $t \in (1, 2)$ there exists a tame annulus A_t such that

4. $A_t \cap S$ is the simple closed curve $J_t = h(\{(x, y) | x^2 + y^2 = t^2\})$, and

5. $A_t \subseteq N \cap \overline{U}$.

We need the following well-known lemma from general topology. An easy proof may be obtained by showing that the space of all continuous functions from an element of C into X is a separable metric space under the sup-norm metric. The elements of C may then be considered as points in this separable metric space.

Lemma 4. If C is an uncountable collection of homeomorphic compact subsets of a separable metric space X then there exists a countable subcollection C' of C such that if $Y \in C - C'$ then there exists a sequence $\{Y_i\} \subset C - C'$ which converges homeomorphically to Y.

Apply Lemma 4 by letting $C = \{A_t | t \in (1, 2)\}$ and consider an $A_t \in C - C'$. There is a sequence $\{A_{t_i}\} \subset C - C'$ converging homeomorphically to A_t; consequently, there exists an integer i such that A_t and A_{t_i} are homeomorphically so close that there exists a singular annulus B_t (resulting from a homotopy) such that

6. $\text{Bd } B_t = (\text{Bd } A_t \cup \text{Bd } A_{t_i}) - S$, and
7. $B_t \subseteq N \cap \overline{U}$.

The union of A_t, B_t and A_{t_i} is a singular annulus which has no singularities near its boundary. Dehn's lemma [9] is applied to replace $A_t \cup B_t \cup A_{t_i}$ with a nonsingular annulus C_t with the same boundary.
Hence there exists a countable set $P \subset (1, 2)$ such that if $t \in (1, 2) - P$ there exists a tame annulus C_t such that

(8) $\partial C_t = J_i \cup J_s$ for some $s \in (1, 2)$, and

(9) $\text{Int } C_t \subset N \cap U$.

Let D_t be the annulus lying in A with the same boundary as C_t. It is straightforward to show that there exists a countable set $Q \subset (1, 2)$ such that $s \in Q$ whenever

$$J_s \subset \bigcup_{t \in (1, 2) - P} \text{Int } D_t.$$

Furthermore there exists a countable set $R \subset (1, 2) - P$ such that

$$\bigcup_{t \in (1, 2) - P} \text{Int } D_t = \bigcup_{t \in R} \text{Int } D_t.$$

The set

$$Y = (\bigcup_{s \in Q} J_s) \cup (\bigcup_{t \in R} \partial D_t)$$

is the union of a countable number of tame simple closed curves, so by Theorem 2 there exists a 0-dimensional set $F \subset S - Y$ such that $U \cup F$ is 1-ULC.

It follows that there exists an open set V containing $f(D) \cap S$ such that loops in $V \cap U$ can be shrunk to points in $(U \cup F) \cap (N - C)$. It is straightforward to find a finite collection E_1, \ldots, E_k of disjoint disks in D such that $f^{-1}(S) \subset \bigcup_{i=1}^k E_i \subset \text{Int } D$ and $f(\partial D \cup E_i) \subset V \cap U$. The map $f|_{\partial D \cup E_i}$ is extended to a map $f_i: E_i \to (U \cup F) \cap (N - C)$. The maps f_i ($i = 1, \ldots, k$) and $f|_D \cap D \cup E_i$ are pieced together to form a map $g: D \to U \cup F$. Note that $g(D) \cap S \subset \text{Int } A \subset (U \cap \text{Int } D_t) - Y$.

There exists a finite set $T \subset R$ such that $g(D) \cap S \subset \text{Int } \bigcup_{i \in T} D_t$. We assume that C_t and $C_{t'}$ are in general position whenever $t, t' \in R$ and $t \neq t'$. Note that for each $s \in T$ a simple closed curve K in $\text{Int } C_t$, links ∂D if and only if K separates the boundary components of C_t in C_t'; thus, a simple closed curve in $\text{Int } C_t \cap \text{Int } C_{t'}$ bounds a disk in $\text{Int } C_t$ if and only if it bounds a disk in $\text{Int } C_{t'}$. Using standard disk and annulus trading techniques we alter the collection $\{C_i\}_{i \in T}$ to form a new finite collection $\{F_i\}_{i=1}^n$ of annuli such that

(10) $\partial F_i = J_i \cup J_s$ for some $s, t \in (1, 2)$,

(11) $\text{Int } F_i \subset N \cap U$,

(12) $\text{Int } F_i \cap \text{Int } F_j = \emptyset$ whenever $i \neq j$, and if G_i is the annulus lying in A with the same boundary as F_i then

(13) $g(D) \cap S \subset \bigcup_{i=1}^n \text{Int } G_i$.

For $i = 1, \ldots, n$ each component of the boundary of F_i links ∂D and $F_i \cap \partial D = \emptyset$; consequently, each simple closed curve in $\text{Int } F_i$
— C bounds a disk in Int F_i. Since $g(D) \cap C = \emptyset$, it follows that there exists a finite collection D_{ij} of disjoint disks in Int F_i such that $g(D) \cap F_i \subset \bigcup_j D_{ij}$. The union, $\bigcup_i D_{ij}$, separates $g(Bd D)$ from $g(D) \setminus S$ on $g(D)$ so it follows from the Tietze Extension Theorem as indicated in [4, Lemma 6] that there is a map $f': D \to (U \cap N) \cup (f(D) - N)$ such that $f' | Bd D = g | Bd D = f | Bd D$. Since $\text{Diam } f(D) \cup N < \epsilon$, $\text{Diam } f'(D) < \epsilon$ and we have U is 1-ULC. An application of Theorem 1 completes the proof.

Theorem 5. A 2-sphere S in E^3 is tame if and only if S can be pierced at each arc with a tame disk.

Proof. The lemma after Theorem 4 of [6] shows that the hypothesis of Theorem 3 is satisfied.

R. J. Daverman has recently weakened the hypothesis of Theorem 5 to include the case where S can be pierced at each arc with a singular disk and each arc of S is tame.

References

University of Tennessee