APPLICATIONS OF ϵ-ENTROPY TO THE COMPUTATION OF n-WIDTHS

J. W. JEROME AND L. L. SCHUMAKER

1. The concepts of ϵ-entropy and n-width of compact sets in Banach spaces play an important role in approximation theory (see [1], [2], [3] and references therein). The entropy and widths of many compact classes of smooth and analytic functions in various well-known function spaces have been computed.

It is known that entropy and n-width are related to each other, e.g., by certain integral inequalities (see [3, p. 164]). There is every reason to believe, however, that in general the behavior of one quantity does not determine in a sharp way the behavior of the other.

The purpose of this paper is to show how the implicit relationship between n-width and entropy inherent in certain negative Vituškin type results for nonlinear approximation can be utilized to compute n-widths of some classes of smooth functions. As examples we shall compute the n-widths for the following classes.

Let S be an s-dimensional parallelepiped, and let ω be a monotone increasing subadditive function which vanishes at zero. We define Λ_{n}^{s} in $C(S)$ and Λ_{n}^{p} in $L^{p}(S)$, $1 \leq p < \infty$, as

\[\Lambda_{n}^{s} = \Lambda_{n}^{s}(M_{0}, \cdots, M_{r+1}, S) = \{ f: f \in C(S), \|D^{j}f\|_{\infty} \leq M_{j}, \]
\[0 \leq j \leq r, \quad \text{and} \quad \omega(D^{j}f; t) \leq M_{r+1}\omega(t) \} \]

\[\Lambda_{n}^{p} = \Lambda_{n}^{p}(M_{0}, \cdots, M_{r+1}, S) = \{ f: f \in C^{r}(S), \|D^{j}f\|_{p} \leq M_{j}, \]
\[0 \leq j \leq r, \quad \text{and} \quad \omega(D^{j}f; t) \leq M_{r+1}\omega(t) \}, \quad 0 < \alpha \leq 1, \]

where $\omega(D^{j}f; t)$ denotes the modulus of continuity of $D^{j}f$ and $D^{j}f$ denotes an arbitrary partial derivative of f of order j.

The n-widths of Λ_{n}^{s} have been computed elsewhere (cf. [3]) by other means, but the results for Λ_{n}^{p} are new.

2. Vituškin-type results. In this section we will state, after some initial definitions, theorems due to Vituškin and Lorentz which say in effect that if the n-width of a class is known to be less than ϵ, then n must be at least as large as the ϵ-entropy of that class. These theorems will later be exploited to obtain lower bounds for n-widths.
By the \(n \)-width, \(d_n(A) \), of a set \(A \) in a Banach space \(\mathfrak{X} \) we mean the number

\[
d_n(A) = \inf_{\dim \mathcal{M} = n} \sup_{f \in A} \sup_{g \in \mathcal{M}} \|f - g\|
\]

where \(\mathcal{M} \subseteq \mathfrak{X} \), and by the \(\varepsilon \)-entropy \(H_\varepsilon(B) \) in \(\mathfrak{X} \) we mean the logarithm of the minimum number of sets of diameter \(\leq 2\varepsilon \) whose union contains \(B \). Finally, \(\lambda(\varepsilon) \approx \mu(\varepsilon) \) (weak asymptotic equivalence) is to mean that \(\lambda = O(\mu) \) and \(\mu = O(\lambda) \) as \(\varepsilon \to 0 \).

We state first the theorem of Vituškin [1, Theorem 12, p. 928] which, though in its original form deals with nonlinear approximation, is here specialized to the case of linear approximation of the class \(\Lambda_\varepsilon^{*\omega} \).

Theorem 2.1 (Vituškin). Consider the class \(\Lambda_\varepsilon^{*\omega} \subseteq C(S) \). If \(d_n(\Lambda_\varepsilon^{*\omega}) \leq \varepsilon \) then

\[
n \geq c_1 H_\varepsilon(\Lambda_\varepsilon^{*\omega}).
\]

Lorentz [1, Theorem 6, p. 915] has proved analogous results for arbitrary separable Banach spaces:

Theorem 2.2 (Lorentz). Let \(A \) be an arbitrary compact set in a separable Banach space \(\mathfrak{X} \) and let \(d_n(A) < \varepsilon \). If \(\forall q \), \(0 < q < 1 \), \(\exists \alpha > 0 \) \(\exists H_\varepsilon^{q\omega}(A) \leq q H_\varepsilon(A) \), then

\[
n \geq c_1 H_\varepsilon^{q\omega}(A) - c_2.
\]

Notice that for sufficiently small \(\varepsilon \) (i.e. sufficiently large \(n \)) \(2.2 \) may be rewritten as

\[
n \geq c_3 H_\varepsilon^{q\omega}(A).
\]

3. \(n \)-widths of \(\Lambda_\varepsilon^{*\omega} \). In this section we illustrate our method by obtaining the following

Theorem 3.1 (cf. [3, p. 135]). The \(n \)-width of the class \(\Lambda_\varepsilon^{*\omega} \subseteq C(S) \) is given by

\[
d_n(\Lambda_\varepsilon^{*\omega}) \approx n^{-r/s} \omega(n^{-1/s}).
\]

Proof. By the classical Jackson theorem for several variables [3, Theorem 8, p. 90] if \(n^{1/s} \) is an integer we can find a polynomial \(P_n \) of degree \(n^{1/s} - 1 \) in each of its \(s \) variables such that

\[
\|f - P_n\|_\omega \leq M_s n^{-r/s} \omega(n^{-1/s})
\]

for every \(f \in \Lambda_\varepsilon^{*\omega} \). It follows from this using the subadditivity and monotonicity properties of \(\omega \) that
\[d_n(\Lambda^*_{\omega}) = O\left(n^{-\tau/\delta}\omega(n^{-1/\delta})\right) \quad \text{as } n \to \infty. \]

To obtain a lower bound for \(d_n \) we notice that by Theorem 2.1 if \(n < c_1 H_\delta(\Lambda^*_{\omega}) \) then \(d_n(\Lambda^*_{\omega}) \geq \varepsilon \). Since (cf. [1, p. 920])

\[\frac{c_2}{\delta(\beta_0)^s} \leq H_\delta(\Lambda^*_{\omega}) \leq \frac{c_3}{\delta(\gamma_0)^s} \]

where \(\delta = \delta(\eta) \) is defined by the equation \(\delta \omega(\delta) = \eta \) and \(c_2, c_3, \beta, \gamma \)
are positive constants, then any solution \(\varepsilon_n \) of

\[n = \frac{c_1 c_2}{2\delta(\beta_0)^s} \]

provides a lower bound for \(d_n(\Lambda^*_{\omega}) \).

This equation may be rewritten as

\[\frac{\delta(\beta_0)^s}{c_4} = \left(\frac{n}{c_4}\right)^{-1/s} \quad (c_4 = c_1 c_2/2), \]

and hence recalling that \(\delta(\beta_0)\omega(\delta(\beta_0)) = \beta_0 \) we obtain

\[\beta_0 = \left(\frac{n}{c_4}\right)^{-1/s} \omega\left(\left(\frac{n}{c_4}\right)^{-1/\delta}\right). \]

But then

\[d_n(\Lambda^*_{\omega}) \geq \varepsilon_n \geq c_6 n^{-\tau/s}\omega(n^{-1/\delta}) \]

where

\[c_6 = \frac{c_4^{1/\delta}}{\beta([c_4^{1/\delta}] + 1)}. \]

This completes the proof of Theorem 3.1.

4. \(n \)-widths of \(\Lambda^p_{\alpha^p} \).

Theorem 4.1. The \(n \)-width of the class \(\Lambda^p_{\alpha^p} \subset L^p(S) \) is given by

\[d_n(\Lambda_{\alpha^p}) \approx n^{-(r+\alpha)/s} \quad (1 \leq p < \infty). \]

Proof. Since \(\|g\|_p \leq K\|g\|_\alpha \) for all \(g \in L^p(S) \) we have, by the \(s \)-dimensional Jackson theorem,

\[d_n(\Lambda_{\alpha^p}) \leq c n^{-(r+\alpha)/s} \]

for the \(L^p \) \(n \)-width of \(\Lambda_{\alpha^p} \). To compute a lower bound we apply
Theorem 2.2 with $A = \Lambda_{\sigma_0}$ and $\mathcal{X} = L^p$. The entropy of the class $\Lambda_{\sigma_0}^p$ is given by [1, p. 921].

$$H_{\epsilon}(\Lambda_{\sigma_0}^p) = e^{-\epsilon/(r+\alpha)}.$$

Since H_{ϵ} satisfies the hypotheses of Theorem 2.2 the result follows as in §3.

References