ON A WEAKLY CONVERGENT SEQUENCE OF NORMAL FUNCTIONALS ON A VON NEUMANN ALGEBRA

NOBORU SUZUKI

G. F. Dell'Antonio [1] recently has discussed weakly convergent sequences of normal states of von Neumann algebras and proved that every weakly convergent sequence of normal states of a factor of type I converges also uniformly. Moreover, he has shown that this statement is not true for a factor of type II. The purpose of this note is to investigate when a weakly convergent sequence of normal states converges also uniformly in the case of type II factors. We shall confine ourselves to the class of normal generalized irreducible functionals on a factor of type II. Then the generalized irreducibility of functionals makes it possible to find a simple and relevant condition for our problem.

Throughout this paper, for convenience functional will always mean a positive linear functional on a von Neumann algebra. Let us recall that a functional \(\rho \) on a von Neumann algebra \(M \) is said to be generalized irreducible on \(M \) if whenever \(\omega \) is a functional on \(M \) such that that \(\omega \leq \lambda \rho \) for some positive constant \(\lambda \) (i.e., \(\omega(A) \leq \lambda \rho(A) \) for all positive operators \(A \) in \(M \)), there exists a positive operator \(B \) in \(M \) such that \(\omega(A) = \rho(AB) \) for all \(A \in M \). As is well known, every normal trace of a finite von Neumann algebra is generalized irreducible (see [4, Lemma 14.1]). We say that a sequence \(\{\rho_n\} \) of functionals on a von Neumann algebra \(M \) is bounded from below by a functional \(\rho \) on \(M \) if \(\rho \leq \rho_n \) for all \(n \). Then we shall prove the following.

Theorem. Let \(\{\rho_n\} \) be a sequence of normal generalized irreducible functionals on a semifinite factor \(M \) bounded from below by a nonzero normal functional \(\omega \) on \(M \). If \(\rho_n \) converges weakly to a normal generalized irreducible functional \(\rho \) on \(M \), then \(\rho_n \) converges also uniformly to \(\rho \).

1. In what follows, \(M \) will denote a semifinite factor on a Hilbert space \(H \) with inner product \(\langle \cdot, \cdot \rangle \). First we are concerned with a representation theorem of a normal generalized irreducible functional on \(M \) which is essentially due to Halpern [3, Proposition 3.1].

Received by the editors January 18, 1969.

1 This research was partially supported by the National Science Foundation (NSF contract no. GP-8291).
Lemma 1. Let \(\rho \) be a normal generalized irreducible functional on \(M \). If \(\rho \) is faithful on \(M \), then \(\rho \) is a trace of \(M \).

Proof. Let us consider the faithful representation \(\pi \) of \(M \) defined by \(\rho \). Then the representation space is the completion \(K \) of the pre-Hilbert space \(M \) with inner product \(\langle A, B \rangle = \rho(B^*A) \), and \(\rho \) has the form \(\rho(A) = \langle \pi(A)\xi, \xi \rangle \), where \(\xi \) is a cyclic vector of \(\pi(M) \), i.e., \([\pi(M)\xi] = K \). Moreover, \([\pi(M)\xi] = K \) since \(\rho \) is faithful. Thus we may assume without loss of generality that there exists a vector \(\phi \in H \) such that

\[
\rho(A) = \langle A\phi, \phi \rangle \quad \text{and} \quad H = [M\phi] = [M'\phi].
\]

Then it follows from [3, Proposition 3.1] that \(\phi \) is a trace vector of \(M \), that is, \(\rho \) is a trace of \(M \).

Lemma 2. Let \(\rho \) be a normal functional on \(M \) and let \(\tau \) be a faithful normal trace defined on a two-sided ideal \(\mathfrak{M} \) of \(M \) containing all of the finite projections in \(M \). Then \(\rho \) is generalized irreducible if and only if it is represented in the form

\[
\rho(A) = \tau(\lambda EA) \quad \text{for all } A \in M,
\]

where \(E \) is the support of \(\rho \) and \(\lambda \) is a positive constant.

Proof. The "if" part follows immediately from [4, Lemma 14.1].

For each \(A \in M \), we denote by \(A_E \) the restriction of \(EAE \) to \(EH \) and by \(M_E \) the restriction of \(EME \) to \(EH \). Then \(\rho \) induces a faithful normal generalized irreducible functional \(\bar{\rho} \) on \(M_E \) by restriction. Indeed, if \(\omega \) is a functional on the factor \(M_E \) such that \(\omega \leq \mu \bar{\rho} \) for some positive constant \(\mu \), then the functional \(\omega \) on \(M \) defined by \(\omega(A) = \bar{\omega}(A_E) \in M \) is bounded by \(\mu \rho \). Thus there is a positive operator \(B \in M \) such that \(\omega(A) = \rho(AB) \) for all \(A \in M \), and so

\[
\bar{\omega}(A_E) = \omega(EAE) = \rho(EAEB) = \rho(EBE) + \rho(EB(I - E)) = \rho(EBE) = \rho(A_E B_E).
\]

Now it turns out from Lemma 1 that \(\bar{\rho} \) is a trace of \(M_E \). Since \(M_E \) is a finite factor, there is a positive constant \(\lambda \) such that \(\bar{\rho} = \lambda \tau \), where \(\tau \) is the faithful normal trace of \(M_E \) induced by the restriction of \(\tau \) on \(EME \). This means that \(\rho(EAE) = \lambda \tau(EAE) \) for all \(A \in M \). Therefore we have

\[
\rho(A) = \rho(EAE) = \tau(\lambda EA) \quad \text{for all } A \in M.
\]

Remark. As we have seen above, the support \(E \) of a normal generalized irreducible functional on \(M \) is necessarily a finite projection in \(M \), i.e., \(E \in \mathfrak{M} \).
The following lemma is elementary, but is of fundamental importance.

Lemma 3. Let \(\{\rho_n\} \) be a sequence of functionals on a von Neumann algebra. If \(\{\rho_n\} \) converges weakly to 0, then \(\rho_n \) converges uniformly to 0.

In fact, \(\|\rho_n\| = \rho_n(I) \to 0 \) as \(n \to \infty \).

2. **Proof of Theorem.** By Lemma 2, \(\rho_n \) and \(\rho \) are expressed in the forms \(\rho_n(A) = \lambda_n \tau(E_nA) \) and \(\rho(A) = \lambda \tau(EA) \), where \(E_n \) and \(E \) are the supports of \(\rho_n \) and \(\rho \) respectively. Let \(F \) be the support of \(\omega \). Then \(F \) is nonzero and \(F \subseteq E_n, E \) by the hypothesis. Since \(\rho_n(F) \to \rho(F) \), \(\lambda_n \tau(F) \to \lambda \tau(F) \) and hence \(\lambda_n \to \lambda \) as \(n \to \infty \).

Now let us consider the factor \(\tilde{M} = M_E \) obtained by restricting \(EM_E \) to \(EH \) and \(\tilde{A} \) denote an operator in \(\tilde{M} \) which is the restriction of \(EA_E \) to \(EH \). \(\tilde{\rho}_n \) and \(\tilde{\tau} \) denote the functionals on \(\tilde{M} \) induced by the restrictions of \(\rho_n \), \(\rho \) and \(\tau \) on \(EM_E \) respectively. That is, \(\tilde{\rho}_n(\tilde{A}) = \rho_n(EM_E) \) and \(\tilde{\rho}(\tilde{A}) = \rho(EM_E) \). Then it is easily seen that \(\tilde{\rho}_n(\tilde{A}) = \lambda_n \tilde{\tau}(\tilde{E}_n \tilde{A}) \) and \(\tilde{\rho}(\tilde{A}) = \lambda \tilde{\tau}(\tilde{E} \tilde{A}) \). Here we should notice that \(\tilde{E}_n \) are positive operators in \(\tilde{M} \) such that \(\tilde{E}_n \leq \tilde{E} \). We shall show that \(\tilde{\rho}_n \to \tilde{\rho} \) uniformly as \(n \to \infty \). To prove this it is enough to consider the case when \(\tilde{M} \) is standard. In this case, as is well known, \(\tilde{\tau} \) is expressible as the form \(\tilde{\tau}(\tilde{A}) = \langle \tilde{A} \phi, \phi \rangle \), where \(\phi \) is a trace vector of \(\tilde{M} \) such that \([\tilde{M} \phi] = [\tilde{M} \phi] = EH \). Then it follows from the hypothesis that \(\langle \lambda_n \tilde{E}_n \tilde{A} \phi, \tilde{A} \phi \rangle \to \langle \lambda \tilde{E} \tilde{A} \phi, \tilde{A} \phi \rangle \) for each \(\tilde{A} \in \tilde{M} \). Since \(\{\lambda_n \tilde{E}_n\} \) is bounded and \(EH = [\tilde{M} \phi] \), the sequence \(\{\lambda_n \tilde{E}_n\} \) of positive operators converges weakly to \(\lambda \tilde{E} \) in \(\tilde{M} \). Thus, having recalled that \(\lambda_n \to \lambda \), \(\tilde{E}_n \to \tilde{E} \) weakly. This means that the sequence \(\{ \tilde{E} - \tilde{E}_n \} \) of positive operators converges weakly to 0, and so it converges also strongly to 0. That is to say, \(\tilde{E}_n \to \tilde{E} \) strongly. Hence we can conclude that \(\lambda_n \tilde{E}_n \to \lambda \tilde{E} \) strongly. Consequently, for each \(\epsilon > 0 \), there is a positive integer \(N \) such that \(\|\lambda_n \tilde{E}_n - \lambda \tilde{E} \phi\| < \epsilon/\|\phi\| \) for all \(n \geq N \). Then

\[
\|\tilde{\rho}_n - \tilde{\rho}\| = \sup_{\|\tilde{A}\| = 1} |\tilde{\rho}_n(\tilde{A}) - \tilde{\rho}(\tilde{A})| \\
= \sup_{\|\tilde{A}\| = 1} |\langle \lambda_n \tilde{E}_n - \lambda \tilde{E} \phi, \tilde{A} \phi \rangle| \leq \|\lambda_n \tilde{E}_n - \lambda \tilde{E} \phi\| \|\phi\| < \epsilon
\]

for all \(n \geq N \).

Let \(E' = I - E \) and let \(\tilde{M} \) be the factor on \(E'H \) obtained by the restriction of \(E'M'E' \) on \(E'H \). We denote by \(\tilde{A} \) the restriction of \(E'A'E' \) to \(E'H \), and by \(\tilde{\rho}_n \) and \(\tilde{\rho} \) the functionals on \(\tilde{M} \) induced by restricting \(\rho_n \) and \(\rho \) on \(E'M'E' \) respectively. Then, since \(E \) is the support of \(\rho, \tilde{\rho} = 0 \). Thus we have
\[\begin{align*}
|\rho_n(A) - \rho(A)| & \leq |\rho_n(EAE) - \rho(EAE)| + |\rho_n(E'AE)| \\
& \quad + |\rho_n(EAE')| + |\rho_n(E'AE')| \\
& \leq \|\bar{p}_n - \bar{p}\| \|A\| + |\rho_n(EAE)| + |\rho_n(EAE')| \\
& \quad + \|\bar{p}_n\| \|A\|.
\end{align*}\]

Here
\[|\rho_n(EAE)| \leq \rho_n(E)^{1/2}\rho_n(EA^*AE)^{1/2} \leq \rho_n(E)^{1/2}\|\bar{p}_n\|^{1/2}\|(A^*A)^{-1}\|^{1/2}\]
and
\[|\rho_n(EAE')| \leq \rho_n(E)^{1/2}\rho_n(E'AE')^{1/2} \leq \rho_n(E)^{1/2}\|\bar{p}_n\|^{1/2}\|(A^*A)^{-1}\|^{1/2}.
\]

Since \(\rho_n \rightarrow \rho\) weakly, there is a constant \(K\) such that \(\rho_n(E)^{1/2} \leq K\) for all \(n\). Thus from (1) we have the following
\[\|\rho_n - \rho\| = \sup_{\|A\|=1} |\rho_n(A) - \rho(A)| \leq \|\bar{p}_n - \bar{p}\| + \rho_n(E)^{1/2}\|\bar{p}_n\|^{1/2} + K\|\bar{p}_n\|^{1/2} + \|\bar{p}_n\|.
\]
By what we have proved, \(\|\bar{p}_n - \bar{p}\| \rightarrow 0\), and so \(\{\|\bar{p}_n\|\}\) is bounded. Further, \(\rho_n(E)^{1/2} \rightarrow \rho(E)^{1/2} = 0\) and by Lemma 3, \(\|\rho_n\| \rightarrow 0\). Thus it follows from (2) that \(\|\rho_n - \rho\| \rightarrow 0\) as \(n \rightarrow \infty\).

3. Finally we shall show that a weakly convergent sequence of normal generalized irreducible functionals does not necessarily converge uniformly. An example is obtained by a slight modification of the example given in [1, p. 422]. Let \(M\) be a factor of type II_1 and let \(\tau\) be a (normalized) faithful normal trace of \(M\). Denote by \(K\) the completion of the pre-Hilbert space \(M\) with inner product \((A, B) = \tau(B^*A)^{1/2}\). Then, by [1, Lemma 5], there is an orthonormal sequence (considered as vectors in \(K\)) in \(M\) consisting of selfadjoint unitary operators \(U_n\) \((n = 1, 2, \ldots)\) such that \(\tau(U_n) = 0\). That is, \(U_n^2 = I\) and \(\tau(U_n U_m) = \delta_{nm}\). Define a sequence of projections by \(E_n = \frac{1}{2}(I - U_n)\), and put \(\rho_n(A) = \tau(E_n A) (A \in M)\). Then all \(\rho_n\) are generalized irreducible on \(M\) by Lemma 2. Since \(\{U_n\}\) is orthonormal in \(K\),
\[\sum_n |\langle A, U_n \rangle|^2 \leq \|[A]\| < \infty,
\]
where \(\|[A]\| = \langle A, A \rangle^{1/2}\). Thus \(\langle A, U_n \rangle \rightarrow 0\) as \(n \rightarrow \infty\), in other words, \(\tau(U_n A) \rightarrow 0\). Namely, \(\rho_n(A) = \frac{1}{2}\tau(A - U_n A) \rightarrow \frac{1}{2}\tau(A)\) for each \(A \in M\). This means that \(\rho_n\) converges weakly to a normal generalized irreducible functional \(\frac{1}{2}\tau\). But, having noticed that \(\rho_n(U_n) = -\frac{1}{2}\) and \(\frac{1}{2}\tau(U_n) = 0\),
\[\|\rho_n - \frac{1}{2}\tau\| \geq \frac{1}{2}\quad \text{for all } n.
\]
Thus ρ_n does not converge uniformly to $\frac{1}{2}\tau$. Indeed, $\{\rho_n\}$ is not bounded from below by a nonzero normal functional on M. This fact may immediately be verified as follows: $\tau(E_n) = \frac{1}{2}$ for all n and hence

$$\tau(E_1 \cap E_2 \cap \cdots \cap E_n)^2 \leq \left(\frac{1}{2}\right)^n$$

is proved by induction. Thus there does not exist a nonzero projection F in M such that $F \leq E_n$ for all n.

References

University of California, Irvine