A NOTE ON THE INDEX OF A G-MANIFOLD1

HSU-TUNG KU AND MEI-CHIN KU2

1. Introduction. By a G-manifold M we mean a compact Lie group G acting differentiably and preserving orientation on an oriented smooth manifold M. The purpose of this paper is to study the index of a $4k$-dimensional G-manifold.

Let M^{4k} be a $4k$-dimensional G-manifold with or without boundary. The cup-product defines a nondegenerate quadratic form f on $H^{2k}(M, \partial M; R)$, where R is the field of real numbers. Let H^{+} (resp. H^{-}) be the maximal subspace on which this form is positive (resp. negative) definite. The subspaces H^{+} and H^{-} are G-modules over R, hence $H^{+} - H^{-} \subseteq RO(G)$. The index of M is defined to be [4]

\[\tau(M) = \dim H^{+} - \dim H^{-} \]

Now, for any element $g \in G$, the Atiyah-Singer signature $\tau(g, M)$ is defined by evaluating the character of $H^{+} - H^{-}$ on g. Hence

\[\tau(g, M) = \text{Trace} (g^{*} | H^{+}) - \text{Trace} (g^{*} | H^{-}) \]

where $g^{*}: H^{2k}(M, \partial M; R) \rightarrow H^{2k}(M, \partial M; R)$.

For any G-module V over R, let

\[V^{g} = \{ v \in V | gv = v \text{ for all } g \in G \} \]

We define the G-index $\tau^{g}(M)$ as follows:

\[\tau^{g}(M) = \dim(H^{+})^{g} - \dim(H^{-})^{g} \]

From the definition, we have

Proposition 1.1. Suppose M is a $4k$-dimensional G-manifold. If G acts trivially on $H^{2k}(M, \partial M; R)$, then $\tau^{g}(M) = \tau(M)$.

2. Main theorems. The relationship between the index $\tau^{g}(M)$ and Atiyah-Singer signature $\tau(g, M)$ is the following:

Theorem 2.1. Let M be a $4k$-dimensional G-manifold. Then $\tau^{g}(M) = \int_{g} \tau(g, M) dg$.

Proof. First, we show that

\[\dim(H^{\pm})^{g} = \int_{g} \text{Trace} (g^{*} | H^{\pm}) dg. \]

Received by the editors October 4, 1968 and, in revised form, January 13, 1969.

1 This paper is based on [5].

2 The authors are indebted to the referee for some suggestions.

600
To prove this, let
\[\phi(x) = \int_G g^*(x) \, dg \quad \text{for } x \in H^\pm. \]

Then \(\phi \cdot g^* = g^* \cdot \phi = \phi \) for any \(g \in G \), and \(\phi^* = \phi \), and so \(\text{Im } \phi = (H^\pm)^G \).
Thus \(x \in (H^\pm)^G \) if and only if \(\phi(x) = x \). Hence
\[\dim((H^\pm)^G) = \text{Trace}(\phi) = \int_G \text{Trace}(g^* | H^\pm) \, dg. \]

Combine this result together with the definition of \(\tau^G(M) \), we have
\[\tau^G(M) = \int_G \{ \text{Trace}(g^* | H^+) - \text{Trace}(g^* | H^-) \} \, dg \]
\[= \int_G \tau(g, M) \, dg. \]

Theorem 2.2. Let \(G \) be a finite group of order \(q \) acting differentiably and preserving orientation on an oriented smooth \(4k \)-dimensional closed manifold \(M \) so that the orbit space \(M/G \) has a fundamental class and \(\tau(M/G) \) is defined. Then \(\tau^G(M) = \tau(M/G) \).

Proof. We consider the quadratic form \(\tilde{f} \) on \(H^{2k}(M/G; \mathbb{R}) \) defined by cup-product. By [2, p. 38] we have
\[H^*(M/G; \mathbb{R}) \cong H^*(M; \mathbb{R})^G, \]
where \(\pi : M \to M/G \) is the orbit map. Let \(f^G \) be the quadratic form on \(H^*(M; R)^G \) defined by cup-product. Then (cf. [3, p. 37])
\[f^G(\pi^* x, \pi^* y) = (\pi^* x \cup \pi^* y)[M] = (x \cup y)_{\pi_*}[M] \]
\[= q(x \cup y)[M/G] = q\tilde{f}(x, y), \]
where \([M]\) and \([M/G]\) denote the fundamental classes of \(M \) and \(M/G \) respectively. Hence the quadratic forms \(f \) and \(f^G \) have the same index, whence \(\tau^G(M) = \tau(M/G) \).

Theorem 2.3. Let \(G \) be a finite group of order \(q \) and \(M \) be a \(4k \)-dimensional closed \(G \)-manifold. If \(G \) acts freely on \(M \), then
\[\tau(M) = q\tau(M/G). \]

Proof. We note that the tangent bundle to \(M \) is induced by \(\pi \) from the tangent bundle to \(M/G \). Thus \(\pi^* \) maps the Pontrjagin classes \(p_i(M/G) \) of \(M/G \) onto the Pontrjagin classes \(p_i(M) \) of \(M \). Moreover
\[\pi_*[M] = q[M/G]. \] Hence the Pontrjagin number of \(M \) is \(q \) times the corresponding Pontrjagin number of \(M/G \). By Hirzebruch index theorem \([4]\), we have \(\tau(M) = q \tau(M/G) \). Hence the result follows.

Corollary 2.4. Let \(G \) be a finite group of order \(q \) acting freely on a 4k-dimensional closed \(G \)-manifold \(M \). Then \(\tau(M) = q \tau^G(M) \).

Proof. By Theorem 2.2 and Theorem 2.3.

Corollary 2.5. Let \(G \) be a nontrivial finite group acting freely on a 4k-dimensional closed \(G \)-manifold \(M \) such that \(G \) acts trivially on \(H^{2k}(M; \mathbb{R}) \). Then \(\tau(M) = 0 \). In particular, if \(G \) is a compact connected Lie group acting freely on \(M^{4k} \), then \(\tau(M) = 0 \).

Proof. By Proposition 1.1 and Corollary 2.4.

References