NOTE ON RELATIVE p-BASES OF PURELY INSEPARABLE EXTENSIONS

J. N. MORDESON AND B. VINOGRADE

Throughout this note L/K denotes a purely inseparable field extension of characteristic p and nonzero exponent. In [5, p. 745], Rygg proves that when L/K has bounded exponent, then a subset M of L is a relative p-base of L/K if and only if M is a minimal generating set of L/K. The purpose of this note is to answer the following question: If every relative p-base of L/K is a minimal generating set, then must L/K be of bounded exponent? The answer is known to be yes when K and L' are linearly disjoint, $i = 1, 2, \cdots$, see [1]. We give two examples for which the answer is no: One in which the maximal perfect subfield of L is contained in K, and the other in which it is not.

The following lemmas are needed for our examples. An intermediate field L' of L/K is called proper if $K \subseteq L' \subset L$.

Lemma 1. Every relative p-base of L/K ([2, p. 180]) is a minimal generating set of L/K if and only if there does not exist a proper intermediate field L' of L/K such that $L = L'(L^p)$.

Proof. If $L = L'(L^p)$, where L' is a proper intermediate field of L/K, then L' contains a relative p-base M of L/K. Thus $L' \supseteq K(M)$. Conversely, if there exists a relative p-base M of L/K such that $L \supseteq K(M)$, then $L = L'(L^p)$, where $L' = K(M)$. Q.E.D.

Lemma 2. Suppose $L = K(m_1, m_2, \cdots)$, where $m_i \in K(m_{i+1})$, $i = 1, 2, \cdots$. Then $K, K(m_i), L$ are the intermediate fields of L/K, $0 \leq j_i < e_i$ (the exponent of m_i over $K(m_{i-1})$), $i = 1, 2, \cdots$, where $K(m_0)$ means K.

Proof. Let e_i denote the exponent of m_i over K, $i = 1, 2, \cdots$. By [2, p. 196, Exercise 5], the intermediate fields of $K(m_i)/K$ are $K(m_i^{e_i})$, $0 \leq j_i \leq e_i$. If $0 < i < s$, then $K(m_i) \subseteq K(m_s)$, whence $K(m_i) = K(m_i^{e_i^{i,s}})$. Thus the intermediate fields of $K(m_i)/K$ are $K, K(m_i^{e_i})$, $0 \leq j_i < e_i$, $i = 1, \cdots, s$. Let K' be any intermediate field of L/K. If $[K':K] < \infty$, then K'/K is finitely generated. Hence $K' \subseteq K(m_s)$ for some m_s since $L = \bigcup_{i=1}^{s} K(m_i)$. Thus $K' = K(m_i^{e_i})$ for some m_i by the preceding argument. If $[K':K] = \infty$, then K' is the union over c of $K(c)$ for all $c \in K'$. Now $K(c) = K(m_i^{e_i}) \supseteq K(m_{i-1})$ for some m_i.
and for all \(c \in K' - K \) by the previous argument. Since \([K':K] = \infty \), \(i_c \) is an unbounded function of \(c \). Thus \(K' = L \). Q.E.D.

Example 1. \(L/K \) is of unbounded exponent, the maximal perfect subfield of \(L \) is not contained in \(K \), and every relative \(p \)-base of \(L/K \) is a minimal generating set of \(L/K \): Let \(P \) be a perfect field and \(z, y, x_1, x_2, \cdots \) independent indeterminates over \(P \). Let \(K = P(z, y, x_1, x_2, \cdots) \) and \(L = K(m_1, m_2, \cdots) \), where \(m_i = z^{p-i-1} x_i^{p-1} + y^{p-1} \), \(i = 1, 2, \cdots \). Clearly, \(L/K \) is of unbounded exponent. \(P(z^{p-1}, y^{p-2}, \cdots) \) is the maximal perfect subfield of \(L \) and is not in \(K \). By Lemma 1, every relative \(p \)-base of \(L/K \) is a minimal generating set of \(L/K \) if we show that \(L \notin L'(L^p) \) for any proper intermediate field \(L' \) of \(L/K \). We postpone this proof.

Example 2. \(L/K \) is of unbounded exponent, the maximal perfect subfield of \(L \) is contained in \(K \), and every relative \(p \)-base of \(L/K \) is a minimal generating set of \(L/K \): Let \(P \) be a perfect field and \(z, y, x_1, x_2, \cdots \) independent indeterminates over \(P \). Let \(K = P(y, x_1, x_2, \cdots) \) and \(L = K(m_1, m_2, \cdots) \), where \(m_1 = x_1^{p-2} \) and \(m_{i+1} = (m_i^p y + x_{i+1})^{p-2} \), \(i = 1, 2, \cdots \). Clearly, \(L/K \) is of unbounded exponent. It follows that \(L = P(y, m_1, m_2, \cdots) \) and that \(\{ y, m_1, m_2, \cdots \} \) is an algebraically independent set over \(P \). That is, \(L/P \) is a pure transcendental extension. Thus \(P, P \subseteq K \), is the maximal perfect subfield of \(L \) by Corollary 2 of \([3, p. 388]\). By Lemma 1, it remains to be shown that \(L \neq L'(L^p) \) for any proper intermediate field \(L' \) of \(L/K \).

We prove simultaneously for Examples 1 and 2 that such a field \(L' \) cannot exist. In both examples, it follows that \(K(L^p) = K(m_1^p, m_2^p, \cdots) \), \(m_i^p \subseteq K(m_{i+1}^p) \) and \(m_{i+1}^p \) has exponent 1 over \(K(m_i^p) \) for \(i = 1, 2, \cdots \). Hence, by Lemma 2, the intermediate fields of \(K(L^p)/K \) appear in a chain. Now suppose there exists a proper intermediate field \(L' \) of \(L/K \) such that \(L = L'(L^p) \). Since \(L' \cap K(L^p) = K(m_i^p) \) for some integer \(s \geq 0 \). We show \(L' \) and \(K(L^p) \) are linearly disjoint over \(K(m_i^p) \) by showing that for every proper intermediate field \(K' \) of \(K(L^p)/K(m_i^p) \), \(L' \) and \(K' \) are linearly disjoint over \(K(m_i^p) \). By Lemma 2, \(K' = K(m_i^p) \) for \(t \geq s \). Now \(m_i^p \) has exponent \(t-s \) over \(K(m_i^p) \subseteq L' \). If \(((m_i^p)^{p^r})^{p^r} \subseteq L' \), then we contradict \(L' \cap K(L^p) = K(m_i^p) \). Hence the irreducible polynomial of \(m_i^p \) over \(K(m_i^p) \) remains irreducible over \(L' \). Thus \(L' \) and \(K(m_i^p) \) are linearly disjoint over \(K(m_i^p) \), whence \(L' \) and \(K(L^p) \) are linearly disjoint.

Since \(L = L'(L^p) \), \(m_{s+1} \in L' \cap L(p) \). Hence \(m_{s+1} = \sum_{j=0}^{e-1} c_j \cdot (m_i^p)^j \) for some integer \(t \), where \(c_j \in L' \). Now \(t \geq s+2 \) since \(m_{s+1} \) has exponent 2 over \(K(m_i^p) \) and \(L' \) has exponent 1 over \(K(m_i^p) \). Thus

\[
m_{s+1}^p = \sum_j c_j (m_i^p)^{ip}.
\]
By the division algorithm, \(j p = p^{i-r} q_i + r_i \), \(0 \leq r_i < p^{i-r} \). Hence

\[
(*) \quad m_{i+1}^p = \sum_i \left(c_i^p (m_i^p) p^{i-r} q_i \right)(m_i^p)
\]

and

\[
c_i^p (m_i^p) p^{i-r} q_i = c_i^p \in L' \cap L^p.
\]

Writing \(m_{i+1}^p \) in terms of \(m_i^p \), we get for Example 1:

\[
m_{i+1}^p = (m_i^p) p^{i-r+1} k_0 x_{i+1} - k_1,
\]

where

\[
k_0 = x_i^{-p^{i-r+1}}
\]

and

\[
k_1 = y x_i^{-p^{i-r+1}} x_{i+1} - y.
\]

By (*)

\[
(m_i^p) p^{i-r+1} x_{i+1} = k_0 x_i^{-p^{i-r+1}} + k_0 x_i \sum c_i^p (m_i^p)^{i-r}.
\]

Hence, by the linear disjointness of \(L' \) and \(K(L^p) \) over \(K(m_i^p) \) and since \(\{ (m_i^p)^j \mid j = 0, \ldots, p^{i-r} - 1 \} \) is linearly independent over \(K(m_i^p) \), \(x_{i+1} \in L' \cap L^p \). Thus \(x_{i+1} \in L \), a contradiction.

For Example 2, we get

\[
m_{i+1}^p = (m_{i+2}^p) y^{-1} - x_{i+2} y^{-1} = \cdots = (m_i^p) p^{i-r+1} k_0 y^{-1} - k_1
\]

for suitable \(k_0, k_1 \in K \). By an argument similar to that in Example 1, we obtain \(y x_{i+1} \in L \), a contradiction.

REMARK. Let \(P \) denote the maximal perfect subfield of \(L \) and \(M \) a relative \(p \)-base of \(L/K \). Consider the properties: (1) \(P \subseteq K \), (2) \(P \not\subseteq K \), (3) there exists an \(M \) such that \(L = K(M) \), and (4) for all \(M, L = K(M) \). None implies the other except for (4) implies (3).

For instance, Example 1 shows that (4) \(\Rightarrow \) (1) and Example 2 shows that (4) \(\Rightarrow \) (2). Example 2 of \([4, \text{p. 333}] \) shows that (3) \(\Rightarrow \) (4).

Letting \(L \) be perfect gives us an example showing that (2) \(\Rightarrow \) (3). We show (1) \(\Rightarrow \) (3) by giving an example constructed by E. A. Hamann. Let \(K = Q(x_1, x_2, \ldots) \) and

\[
L = K(x_1^{p-1}, (x_1 + x_2)^{p-2}, (x_1 + x_2 + x_1^2)^{p-3}, \ldots),
\]

where \(Q \) is a perfect field and \(x_1, x_2, \ldots \) are independent indeterminates over \(Q \). \(L = K(L^p) \) and \(L/Q \) is pure transcendental. The remaining implications are trivial.
References

Creighton University and
Iowa State University