A note on -closed projections

Author:
N. Noble

Journal:
Proc. Amer. Math. Soc. **23** (1969), 73-76

MSC:
Primary 54.60

MathSciNet review:
0246271

Full-text PDF Free Access

References | Similar Articles | Additional Information

**[CN]**W. W. Comfort and Stelios Negrepontis,*Extending continuous functions on 𝑋×𝑌 to subsets of 𝛽𝑋×𝛽𝑌*, Fund. Math.**59**(1966), 1–12. MR**0200896****[F]**Zdeněk Frolík,*The topological product of two pseudocompact spaces*, Czechoslovak Math. J**10(85)**(1960), 339–349 (English, with Russian summary). MR**0116304****[FF]**I. Fleischer and S. P. Franklin,*On compactness and projections*, (to appear).**[G]**Irving Glicksberg,*Stone-Čech compactifications of products*, Trans. Amer. Math. Soc.**90**(1959), 369–382. MR**0105667**, 10.1090/S0002-9947-1959-0105667-4**[GJ]**Leonard Gillman and Meyer Jerison,*Rings of continuous functions*, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR**0116199****[H]**Anthony W. Hager,*Projections of zero-sets (and the fine uniformity on a product)*, Trans. Amer. Math. Soc.**140**(1969), 87–94. MR**0242114**, 10.1090/S0002-9947-1969-0242114-2**[HM]**A. Hager and S. Mrówka, (a)*Compactness and the projection mapping from a product space*, Notices Amer. Math. Soc.**12**(1965), 368 (Abstract 65T-167). (b) Unpublished manuscript.**[N]**N. Noble,*Products with closed projections*, Trans. Amer. Math. Soc.**140**(1969), 381–391. MR**0250261**, 10.1090/S0002-9947-1969-0250261-4**[N]**N. Noble,*Ascoli theorems and the exponential map*, Trans. Amer. Math. Soc.**143**(1969), 393–411. MR**0248727**, 10.1090/S0002-9947-1969-0248727-6**[N]**-,*Products of quotient maps and spaces with weak topologies*, (to appear).**[N]**-,*Countably compact and pseudocompact products*, Czechoslovak. Math. J. (to appear).

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54.60

Retrieve articles in all journals with MSC: 54.60

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1969-0246271-9

Article copyright:
© Copyright 1969
American Mathematical Society