ON BERMAN'S VERSION OF THE LÉVY-BAXTER THEOREM

PEGGY TANG STRAIT

In this note we derive the numerical value of the constant B_k in Berman's version of the Lévy-Baxter theorem [2]. Let $X(t)$, $t = (t_1, t_2, \cdots, t_k), -\infty < t_1, \cdots, t_k < \infty, \|t\| = (t_1^2 + t_2^2 + \cdots + t_k^2)^{1/2}$, be Lévy's Brownian process of k parameters: it is a Gaussian process with mean 0 and covariance function

$$\rho(s, t) = E\{X(s)X(t)\} = (1/2)\{\|s\| + \|t\| - \|s - t\|\}. \quad (1)$$

For each integer $n \geq 1$, let the unit cube $\{t: 0 \leq t_1 \leq 1, \cdots, 0 \leq t_k \leq 1\}$ be broken up into 2^{nk} cubes whose edges have the common length 2^{-n} and whose corner-points are of the form $(i_12^{-n}, \cdots, i_k2^{-n})$, where the i's are integers between 0 and 2^n. Let $Y_{i,n}$ denote the kth-order difference of the sample function X over the cube $C(i, n) = \{t: (i_1-1)2^{-n} \leq t_1 \leq i_12^{-n}, \cdots, (i_k-1)2^{-n} \leq t_k \leq i_k2^{-n}\}$:

$$Y_{i,n} = \Delta_1 \cdots \Delta_k X = X(i_12^{-n}, \cdots, i_k2^{-n}) - \sum_{r=1}^{k} p_r + \sum_{r<s}^{k} p_{rs}$$

$$- \cdots + (-1)^k X((i_1-1)2^{-n}, \cdots, (i_k-1)2^{-n}) \quad (2)$$

where $p_{rs} \cdots t$ denotes $X(c_1, \cdots, c_k)$ for $c_r = (i_r-1)2^{-n}$, $c_s = (i_s-1)2^{-n}$, \cdots, $c_t = (i_t-1)2^{-n}$ and the remaining c_j equal i_j2^{-n}. S. Berman [2] proved: For $n \geq 1$, let $\sum|Y_{i,n}|^{2k}$ be the sum of the $2k$th powers of the $Y_{i,n}$ over all cubes $C(i, n)$. Its limit, for $n \to \infty$, exists with probability 1 and is equal to a numerical constant B_k.

The theorem below gives the numerical value of B_k.

Theorem.

$$B_k = \frac{(2k)!}{k!2^k} \left[2^{k-1} \sum_{r=1}^{k} (-1)^{r-1} \binom{k}{r} \sqrt{r} \right]^k \quad (3)$$

where

$$\binom{k}{r} = \frac{k!}{r!(k-r)!}. \quad (4)$$

Proof. Berman showed in [2] that

$$B_k = ((2k)!/k!2^k)D_k^k \quad (4)$$

Received by the editors February 11, 1969.
where D_k is the variance of the kth-order difference of $X(\cdot)$ over the corner-points of the unit cube. We shall show that

$$D_k = 2^{k-1} \sum_{r=1}^{k} (-1)^{r-1} \binom{k}{r} \sqrt{r}.$$

Represent the 2^k different corner points by t_1, \ldots, t_{2^k}. Let $e_j, j = 1, \ldots, 2^k$ denote ± 1 according to the rule: $e_j = +1$ if there are an even number of zeros in the k coordinates of t_j, whereas, $e_j = -1$ if there are an odd number of zeros in the k coordinates of t_j. We can then write D_k as

$$D_k = \text{Var} \left[\sum_{j=1}^{2^k} e_j X(t_j) \right] = \sum_{i=1}^{2^k} \sum_{j=1}^{2^k} e_ie_j \rho(t_i, t_j).$$

$$= \sum_{i=1}^{2^k} \sum_{j=1}^{2^k} e_ie_j (1/2) \left(||t_i|| + ||t_j|| - ||t_i - t_j|| \right)$$

$$= \sum_{i=1}^{2^k} \sum_{j=1}^{2^k} e_ie_j ||t_i|| - \left(1/2\right) \sum_{i=1}^{2^k} \sum_{j=1}^{2^k} e_ie_j ||t_i - t_j||.$$

There are $C_{k,j}$ distinct ways of forming k-tuples consisting of exactly j zeros and $k-j$ ones, thus

$$\sum_{j=1}^{2^k} e_j = \sum_{j=0}^{k} \binom{k}{j} (-1)^{j} = 0$$

(For the last equality see [3, p. 63].) We therefore have

$$\sum_{i=1}^{2^k} \sum_{j=1}^{2^k} e_ie_j ||t_i|| = \sum_{j=1}^{2^k} e_j \sum_{i=1}^{2^k} e_i ||t_i|| = 0.$$

Now, since the t_j's are corner points of the unit cube in k-dimensional Euclidean space, we have $||t_i - t_j|| = \sqrt{r}$ where r is the number of coordinates in t_i that differ from the corresponding coordinates in t_j. Also, note that if $||t_i - t_j|| = \sqrt{r}$, then $e_ie_j = (-1)^r$. Thus,

$$- \left(1/2\right) \sum_{i=1}^{2^k} \sum_{j=1}^{2^k} e_ie_j ||t_i - t_j|| = - \left(1/2\right) \sum_{r=1}^{k} \binom{k}{r} 2^k \sqrt{r} (-1)^r$$

$$= 2^{k-1} \sum_{r=1}^{k} (-1)^{r-1} \binom{k}{r} \sqrt{r}.$$

Equations (4), (6), (8) and (9) yield the desired result of the theorem.
References

City University of New York, Queens College