EXTREME POINTS OF THE UNIT CELL IN LEBESGUE-BOCHNER FUNCTION SPACES. I

K. SUNDARESAN

Several interesting results have been announced recently concerning the extremal structure of the unit cell in $C_B(X)$, the space of continuous Banach space valued functions on a compact Hausdorff space X with the supremum norm. For these and related results see Blumenthal, Lindenstrauss, and Phelps [1] (hereafter referred to as BLP), Phelps [2], Peck [3], and Cantwell [4]. The present paper is concerned with the extreme points of the unit cell of a space of Banach space valued functions which is an abstract analogue of the space L_p. For a detailed account of these spaces we refer to Bochner and Taylor [5], Bogdanowicz [6], Edwards [7] and Dinculeanu [8].

We adhere to the following notation; μ denotes the contraction of the Lebesgue measure to the unit interval $I = [0, 1]$. X_E denotes the characteristic function of the set $E \subseteq I$. If C is a set then $\text{Ext } C$ denotes the set of extreme points of C. If f is a Banach space valued function, $S_f = \{ t \mid f(t) \neq 0 \}$. If B is a Banach space with the norm $\| \|$ and f is a function on $I \to B$ then $P(f)$ is the function on $I \to B$ defined by

$$P(f)(t) = \frac{f(t)}{\| f(t) \|} \quad \text{if } t \in S_f,$$

$$P(f)(t) = 0 \quad \text{if } t \notin S_f.$$

Definition. Let B be a Banach space. The class of all B-valued Lebesgue measurable functions f on I such that the function $t \to \| f(t) \|$ is p-summable on I ($p \geq 1$) is denoted by $L_p\{B\}$. Identifying the functions in $L_p\{B\}$ which agree a.e. and equipping the resulting linear space with the norm $\| f \| = \left[\int_I \| f(t) \|^p \, d\mu \right]^{1/p}$ we obtain a Banach space. We continue to denote this Banach space by $L_p\{B\}$.

Throughout the paper U is the unit cell in B, $U_p(B)$ is the unit cell in $L_p\{B\}$. Our first proposition concerns the cell $U_1(B)$. It is known when B is the real line $U_1(B)$ has no extreme points (see for example p. 81, Day [11]).

Proposition 1. The cell $U_1(B)$ has no extreme points.

Received by the editors October 14, 1968 and, in revised form, February 5, 1969.

* This work was supported in part by Sacife Faculty Grant administered by Carnegie-Mellon University.

179
Proof. Let \(f \in U_1(B) \) with \(\|f\| = 1 \). Since the function \(x \to \int_B |f(t)| \, d\mu \) is a continuous function on \(I \) there exist a pair of disjoint measurable sets \(A_1 \) and \(A_2 \) such that \(\int_{A_1} |f(t)| \, d\mu = \int_{A_2} |f(t)| \, d\mu \neq 0 \). Let \(B = A_1 \cup A_2 \) and let \(g_i, i = 1, 2 \), be the functions on \(I \) defined by

\[
g_1 = X_{I \sim A_1} f + (1 + \varepsilon) X_{A_1} f + (1 - \varepsilon) X_{A_2} f
\]

and \(g_2 \) is the same as \(g_1 \) except that \(\varepsilon \) is replaced by \(-\varepsilon\). With \(0 < \varepsilon < 1 \) it is verified that \(g_i \in U_1(B), \; i = 1, 2, \; g_1 \neq g_2 \) and \(f = (g_1 + g_2)/2 \). Thus \(\text{Ext} \; U_1(B) = \emptyset \) as was to be shown.

Next we proceed to the case of \(L_p(B), \; 1 < p < \infty \).

Theorem 1. If \(1 < p < \infty \) then a function \(f \in L_p(B) \) with \(\|f\| = 1 \) is an extreme point of \(U_p(B) \) if and only if \(P(f)/[\mu(S_f)]^{1/p} \in \text{Ext} \; U_p(B) \).

Proof. Let \(f \in L_p(B) \) with \(\|f\| = 1 \). Let us recall the well-known Clarkson inequalities for \(L_p(R) \). If \(x, y \in L_p(R) \) then

\[
|x+y|^p \leq 2^{p-1} \left(|x|^p + |y|^p \right) \quad \text{if} \quad 2 \leq p
\]

\[
|x+y|^p \leq 2 \left(|x|^q + |y|^q \right)^{p/q} \quad \text{if} \quad 1 < p \leq 2 \text{ and } q = p/(p-1).
\]

Using these inequalities it is verified (*) if \(f = (g_1 + g_2)/2 \) and \(g_1, g_2 \in U_p(B) \) then \(\|f(t)\| = \|g_1(t)\| = \|g_2(t)\| \), a.e. Thus, if \(P(f)/[\mu(S_f)]^{1/p} \in \text{Ext} \; U_p(B) \) then there exist \(g_i \in U_p(B), \; i = 1, 2 \), such that \(g_1 \neq g_2 \) and \(P(f)/[\mu(S_f)]^{1/p} = (g_1 + g_2)/2 \) where \(g_1(t) = \|g_1(t)\| = \|g_2(t)\| = \|g_1(t)\| = \|g_2(t)\| \), a.e. Hence \(f = (h_1 + h_2)/2 \) where \(h_i(t) = [\mu(S_f)]^{1/p} f(t) \), a.e. It is verified that \(f \in \text{Ext} \; U_p(B) \). Conversely if \(f \in \text{Ext} \; U_p(B) \) then there exist \(g_i \in U_p(B) \) such that \(f = (g_1 + g_2)/2, \; g_1 \neq g_2 \). Hence by (*) \(\|f(t)\| = \|g_1(t)\| = \|g_2(t)\| \), a.e. In particular \(X_{S_f} = X_{S_{g_1}} = X_{S_{g_2}} \). With these observations it follows that \(P(f)/[\mu(S_f)]^{1/p} = a_1 + a_2, \; a_1 \neq a_2 \), where \(a_i = P(g_i)/[\mu(S_{g_i})]^{1/p}, \; i = 1, 2 \). Since \(a_i \in U_p(B) \), \(P(f)/[\mu(S_f)]^{1/p} \in \text{Ext} \; U_p(B) \) completing the proof.

It is natural to inquire whether \(f \in \text{Ext} \; U_p(B) \) \((p>1) \) if and only if \(f(t)/\|f(t)\| \in \text{Ext} \; U \) for \(t \) a.e. in \(S_f \). The results that follow show that this assertion is true if \(B \) is finite dimensional while the if part is always true.

Theorem 2. If \(1 < p < \infty \) then \(f \in \text{Ext} \; U_p(B) \) if \(\|f\| = 1 \) and \(f(t)/\|f(t)\| \in \text{Ext} \; U \) for \(t \) a.e. in \(S_f \).

Proof. Let \(g \) be the function \(P(f)/[\mu(S_f)]^{1/p} \). If \(g \in \text{Ext} \; U_p(B) \) then there exist \(g_i \in U_p(B) \) such that \(g = (g_1 + g_2)/2 \) and \(g_1 \neq g_2 \). Since \(1 < p < \infty \) as observed in (*) in the proof of Theorem 1 it follows that \(\|g(t)\| = \|g_1(t)\| = \|g_2(t)\| = 1/\mu(S_f)^{1/p} \) for \(t \) a.e. in \(S_f \). Hence in particular \(X_{S_f} = X_{S_{g_1}} = X_{S_{g_2}} \). Since \((g_1 + g_2)/2 = g \), for

\[
t \in S_f \quad \frac{f(t)}{\|f(t)\|} = \frac{1}{[\mu(S_f)]^{1/p}} \left(\frac{g_1 + g_2}{2} \right) (t).
\]
Thus if M is the measurable set $\{t \mid g_1(t) \neq g_2(t)\}$ then $\mu(M) > 0$ and $\mu(M \cap S_f) = \mu(M)$ and for $t \in M \cap S_f$, $f(t)/\|f(t)\| \notin \text{Ext } U$ contradicting the hypothesis. Hence $g \in \text{Ext } U_p(B)$ but this implies $f \in \text{Ext } U_p(B)$ by Theorem 1.

Before proceeding to the converse of Theorem 2, we establish two useful lemmas. We state these lemmas in a more general setting than required.

Lemma 1. Let C be a compact convex subset of a finite dimensional Banach space and K a compact subset of I. Let $f: K \to C$ be a continuous mapping such that for all $t \in K$, $f(t) \notin \text{Ext } C$. Then there exists a measurable set $M \subset K$, $\mu(M) > 0$, a positive number δ such that if $t \in M$ there exist $Y_t, Z_t \in C$ with the properties $f(t) = (Y_t+Z_t)/2$ and $\|Y_t - Z_t\| \geq \delta$.

Proof. Since for $t \in K f(t) \in C \sim \text{Ext } C$, for each $t \in K$ there exist $Y_t, Z_t \in C$ such that $f(t) = (Y_t+Z_t)/2$ and $\|Y_t - Z_t\| \geq \epsilon$. M_t is a closed subset of K. For let $\{t_n\}$ be a sequence in M_t such that $t_n \to t$ for some $t \in K$. Let $\{y_n\}, \{z_n\}$ be sequences in C such that $f(t_n) = (y_n+z_n)/2$ and $\|y_n - z_n\| \geq \epsilon$. Since C is a compact set there exist convergent subsequences $\{y_{n_k}\}$ and $\{z_{n_k}\}$ in y and z respectively. Let $y_n \to y_0$ and $z_{n_k} \to z_0$. Since f is continuous $f(t_n) \to f(t) = (y_0+z_0)/2$. Further $\|y_0 - z_0\| = \lim \|y_{n_k} - z_{n_k}\| \geq \epsilon$. Thus $t \in M_t$ and M_t is a closed subset of K. Let $\{B_n\}$ be the sequence of Borel sets in K defined by $B_n = M_1/(n+1) \sim M_{1/n}$. Then $\{B_n\}$ is a measurable partition of K. Since $\mu(K) > 0$ there exists an integer m such that $\mu(B_m) > 0$. Thus choosing $1/(m+1)$ for δ and B_m for M the proof is completed.

Before proceeding to the next lemma, we recall a definition and a theorem concerning set valued functions. Let X, Y be two topological spaces and 2^Y be the set of nonempty closed sets in Y. A mapping $F: X \to 2^Y$ is called upper semicontinuous (u.s.c.) if the set $\{x \mid F(x) \subset G\}$ is open in X for all open set $G \subset Y$. We state a selection theorem, Kuratowski and Ryll-Nardzewski [12]:

Theorem [Kuratowski and Ryll-Nardzewski]. Let X, (Y, d) be two metric spaces and γ d-complete and separable. If $F: X \to 2^Y$ is a u.s.c. map then there exists a Borel measurable function $f: X \to Y$ such that $f(x) \in F(x)$.

Lemma 2. If C, K, f are as in the preceding lemma, then there exist two measurable functions f_1, f_2 on $K \to C$ such that $f = (f_1+f_2)/2$ and $\mu \{t \mid f_1(t) \neq f_2(t)\} > 0$.

Proof. It follows from the preceding lemma that there exist a compact set $K_1 \subset K$, $\mu(K_1) > 0$ and two functions g_1, g_2 on $K_1 \rightarrow C$ such that $f(t) = (g_1(t) + g_2(t))/2$ and $\|g_1(t) - g_2(t)\| \geq 2\delta$ for some positive number δ. Thus, there exists a function $F: K_1 \rightarrow C$, $F(t)$ being the nonempty closed set of points $\xi \in C$ such that for some $\eta \in C$, $f(t) = (\xi + \eta)/2$ and $\|\xi - \eta\| \geq 2\delta$. Further F is a u.s.c. map as shown below. Let G be an open subset of C and $G_1 = \{x \mid F(x) \subseteq G\}$. Suppose that there exists a sequence $\{x_n\}$ in K_1, $x_n \rightarrow x'$, such that $F(x_n) \subseteq G$ for all n. Thus there exists a sequence $\{\xi_n\}$, $\xi_n \in F(x_n) \sim G$. Considering a sequence $\{\eta_n\}$ with $f(x_n) = (\xi_n + \eta_n)/2$ and $\|\xi_n - \eta_n\| \geq 2\delta$, assured by the function F, it follows by straightforward compactness arguments that there exists a subsequence $\{\xi_{n_k}\}$ in $\{\xi_n\}$, $\xi_{n_k} \rightarrow \xi$ for some $\xi \in F(x')$. Since G is a neighborhood of x' there exists $\xi \in G$ contradicting the choice of ξ_n. Thus F is a u.s.c. map. Hence by the Kuratowski and Ryll-Nardzewski theorem there exists a measurable function $f: K_1 \rightarrow C$ with $f(x) \in F(x)$ for all $x \in K_1$. Let $f_2(x) \in C$ be such that $\|f_1(x) - f_2(x)\| \geq 2\delta$ and $f(x) = (f_1(x) + f_2(x))/2$. Then the function f_2 is also measurable and $f_1(x) \neq f_2(x)$ for all $x \in K_1$ and the proof of the lemma is complete.

Since the unit cell of a finite dimensional Banach space is a compact convex set the preceding lemma implies the following theorem.

Theorem 3. If B is a finite dimensional Banach space then $f \in \text{Ext } U_p(B)$ ($1 < p < \infty$) if and only if $\|f\| = 1$ and $f(t)/\|f(t)\| \in \text{Ext } U$ for t a.e. in S_f.

Proof. The if part is taken care of by Theorem 1. Conversely if $f \in \text{Ext } U_p(B)$ then clearly $\|f\| = 1$. Since $\text{Ext } U$ is a G_δ subset of U (see Proposition 1.3 of [9]) and since $P(f)$ is measurable if f is measurable the set $\{t \mid f(t)/\|f(t)\| \in \text{Ext } U, t \in S_f\}$ is measurable. Thus if $f(t)/\|f(t)\| \in \text{Ext } U$ for t a.e. in S_f then there exists a measurable set $M \subset S_f$, $\mu(M) > 0$ such that for $t \in M$, $f(t)/\|f(t)\| \in \text{Ext } U$. Since μ is regular there exists a compact set $K \subset M$ with $\mu(K) > 0$ such that the restriction of $g = [\mu(S_f)]^{-1/p} P(f)$ to K is a continuous function into $[\mu(S_f)]^{-1/p}(U \sim \text{Ext } U)$. Hence by Lemma 2, there exist measurable functions g_i, $i = 1, 2$ on K to $[\mu(S_f)]^{-1/p}(U \sim \text{Ext } U)$ such that $\mu \{t \mid g_1(t) \neq g_2(t)\} > 0$ and the restriction of g to $K = (g_1 + g_2)/2$. Now defining $f_i: I \rightarrow B$ by $f_i(t) = g_i(t)$ if $t \in K$ and $f_i(t) = g(t)$ if $t \notin K$ it follows that $g_i \in U_p(B)$ and $g = (f_1 + f_2)/2$ and $f_1 \neq f_2$. Thus $g \notin \text{Ext } U_p(B)$ which in turn by Theorem 1 implies $f \notin \text{Ext } U_p(B)$ contradicting our choice of f.
Remark. In view of Theorem 1, p. 490 of [11], Theorem 3 in BLP deals with the same question as our Theorem 3, except that they consider $C_B(X)$ the space of continuous functions on a compact Hausdorff space into the space B with the supremum norm. It might be worthwhile to summarize this theorem in [1]. Denoting the unit cell of $C_B(X)$ by V the theorem states that $f \in \text{Ext } V$ if and only if $\|f(t)\| = 1$ for all $t \in X$ and $f(t) \in \text{Ext } U$ for t in a dense subset of X if \(\dim \, B \leq 3 \) or B is finite dimensional with a polyhedral unit cell. Even in the case when $X = I$ and B is 4-dimensional they provide a counterexample by exhibiting a function $f \in \text{Ext } V$ but for all $t \in I$, $f(t) \notin \text{Ext } U$. Thus Theorem 3 of this paper is in sharp contrast with Theorem 3 in BLP [1].

Next we proceed to the case of the Banach space $L_\infty\{B\}$ of measurable functions f on I into B such that the function $t \mapsto \|f(t)\|$ is essentially bounded with $\|f\| = \text{ess}_{t \in I} \sup \|f(t)\|$. Let $U_\infty(B)$ be the unit cell of $L_\infty\{B\}$.

Theorem 4. $f \in \text{Ext } U_\infty(B)$ if and only if $f(t) \in \text{Ext } U$ a.e. Further if B is finite dimensional then the above condition is necessary and sufficient.

The proof of the more difficult part of the theorem i.e. the necessity of the condition, is essentially the same as that of Theorem 3 and the details are not supplied.

In conclusion it might be mentioned that a complete characterization of extreme points of $U_\infty(B)$ is not provided here when B is infinite dimensional and we hope to consider this question elsewhere.

Acknowledgment. I am extremely grateful to the referee for several useful comments.

Bibliography

Carnegie-Mellon University