THE BREADTH AND DIMENSION OF A TOPOLOGICAL LATTICE

TAE HO CHOE

E. Dyer and A. Shields [7] conjectured that if L is a compact connected metrizable distributive topological lattice, then $\dim(L)$ is equal to the breadth of L. L. W. Anderson [1] has proved that if L is a locally compact, (chain-wise) connected distributive topological lattice then the breadth of L is less then or equal to the codimension of L.

In this note we shall show that if L is a locally compact connected distributive topological lattice of inductive dimension n and if the set of points at which L has dimension n has nonvoid interior, then the breadth of L is also n.

Our terminology and notation used in this paper are the same as in [1] and [4].

It is well known that the number of elements in a finite Boolean algebra is always a power of two, and if there are 2^n elements then there are exactly n atoms.

It is also known that the center C of any lattice with 0 and 1 forms a Boolean lattice with the same 0 and 1, and that if L is a compact connected topological lattice of codimension n then the cardinal of C of L, hereafter denoted by $\text{Card}(\text{Cen}(L))$, is at most 2^n, [4].

The following two lemmas have appeared in [4].

Lemma 1. Let L be a compact connected distributive topological lattice. Then L is isomorphic (homeomorphic and lattice-isomorphic) with a Cartesian product of n nondegenerate compact connected chains (hereafter called an n-cube) iff (i) the center of L has exactly n atoms and (ii) for each atom x of the center x/L is a chain.

Lemma 2. Let L be a distributive topological lattice with 0 and 1. If \{\(x_1, \cdots, x_n\)\} is the set of all the atoms of the center of L and if x and y are two incomparable elements in x/L for some i, then $\text{Card}(\text{Cen}(L)) < \text{Card}(\text{Cen}(\{x \land y, \ x \lor y \lor c(x_i)\}))$, where $c(x_i)$ is the complemented element of x_i in the center of L.

Hereafter, inductive dimension is referred to as dimension. In a space L of dimension n, L_n denotes the set of all points at which L has dimension n. If L is a topological lattice and $[x, y] \subseteq L$, and if $\text{Card}(\text{Cen}([x, y])) = 2^n$, then $\text{Ca}([x, y])$ will denote the cardinal n of the atoms of $\text{Cen}([x, y])$. It is known [6] that the codimension is

Received by the editors June 17, 1968.
less than or equal to the inductive dimension in a locally compact Hausdorff space.

Theorem. If L is a locally compact connected distributive topological lattice of dimension n and if L_n has a nonvoid interior, then L contains a subset which is isomorphic with an n-cube.

Proof. Let W_1 be a nonvoid open subset of L and $W_1 \subseteq L_n$. For an element $w \in W_1$ choose neighborhoods V_i and U_i of w and a closed interval $[a, b]$ such that V_i is convex, U_i^* compact and $V_i \subseteq [a, b] \subseteq U_i^* \subseteq W_1$, (see [5]), where U_i^* denotes the closure of U_i. Then $M = [a, b]$ is a compact connected distributive topological lattice of dimension n in its relative topology. Consider $N = \{m | m = Ca([x, y])$ for a closed interval $[x, y] \subseteq V_1\}$. Then N is bounded by n. Let m be the greatest integer of N, $m = Ca([\alpha, \beta])$, and let $\{x_1, \ldots, x_m\}$ be the set of atoms of the center of $[\alpha, \beta]$. Now we shall show that for each i, $I_i = x_i \cap [\alpha, \beta]$ is a nondegenerate compact connected chain. In fact, $[\alpha, \beta]$ is a distributive sublattice. Suppose that I_i is not a chain for some i. Then, by Lemma 2, there exists a closed interval $[\alpha', \beta']$ in $[\alpha, \beta]$ such that $m \leq Ca([\alpha', \beta'])$. This is a contradiction. For each i, I_i is compact and connected because $[\alpha, \beta]$ is. Moreover, the relative topology of each I_i is its intrinsic topology, (see [3]). Since M is compact, $[\alpha, \beta]$ is a compact connected distributive topological lattice in its relative topology. By Lemma 1, it follows that $[\alpha, \beta]$ is isomorphic with an m-cube $I^m = I_1 \times I_2 \times \cdots \times I_m$ under a mapping f.

Suppose $m < n$. Let p be an element of $[\alpha, \beta]$ such that the ith coordinate of $f(p)$ is an inner point of I_i, $i = 1, 2, \ldots, m$, (such a point p is called an inner point of I^m). Now we choose a convex neighborhood U_2 of p such that

$$U_2 \subseteq L \cup \{ (c \land L) \cup (c \lor L) | c \in Cen([\alpha, \beta]) \text{ and } c \neq \alpha, c \neq \beta \}.$$ Setting $U = U_2 \cap V_1$, we choose a neighborhood W of p such that $W \lor W \subseteq U$ and $W \land W \subseteq U$. If we set $V = U \cap [\alpha, \beta]$, then V is a convex neighborhood of p in $[\alpha, \beta]$, and the dimension of V is at most m. Thus $W \land V \neq \emptyset$. Then $p \leq \gamma < z \lor p$. Since U is convex and contains p and $z \lor p$, we have $\gamma \in V = U \cap [\alpha, \beta]$. Clearly γ is an inner point of I^m. So $[\gamma, \beta]$ is also isomorphic with a sub m-cube J^m of I^m. Consider a compact connected chain $C(\gamma, \delta)$ from γ to $\delta = z \lor p$. Then $C(\gamma, \delta)$ is nondegenerate. Moreover, we have $\delta \land [\gamma, \beta] = \{ \gamma \}$. Therefore, the mapping $g: Q^{m+1} = [\gamma, \beta] \times C(\gamma, \delta)$
$P^{m+1} = [\gamma, \beta] \vee C(\gamma, \delta)$ defined by $g(x, s) = x \vee s$ is an isomorphism, where $g^{-1}(y) = (y \wedge \beta, y \wedge \delta)$. Since $g^{-1}(U \cap P^{m+1})$ is nonvoid and open in Q^{m+1}, and Q^{m+1} is isomorphic with an $(m+1)$-cube $J^m \times C(\gamma, \delta)$, $U \cap P^{m+1}$ contains a closed interval which is isomorphic with an $(m+1)$-cube, and which is contained in V_1. Moreover, $Ca(J^m \times C(\gamma, \delta)) = m + 1$. This is a contradiction to the fact of the maximality of m. For the case that $\varepsilon \wedge \rho \notin V$, the dual argument also leads to a contradiction. Hence we have $m = n$ which completes the proof.

Corollary 1. Under the same hypothesis of the Theorem, the breadth, the dimension and the codimension are all the same.

It is known [8] that if L is a compact separable space of dimension n, then L_n has dimension n, and that any n-dimensional subset of Euclidean n-space has nonvoid interior.

Hence we have the following corollary:

Corollary 2. If L is a locally compact connected distributive topological lattice of dimension n which is topologically contained in Euclidean n-space, then L contains a subset which is isomorphic with an n-cell.

Remark. It is a natural question that if L is a compact connected distributive topological lattice of dimension n, then L_n has nonvoid interior. This question is still open. Professor J. T. Borrego has, however, given an example of a compact connected, locally connected, acyclic topological semilattice of 2-dimensions whose L_2 has void interior.

References