THE TANGENT BUNDLE OF THE LONG LINE

JAMES A. MORROW

We prove the following surprise.

THEOREM. The tangent bundle of the long line is not trivial.

PROOF. The long line L is defined in Hocking and Young [1], for example. It is easy to check that L, with the topology defined there, supports the structure of a C^∞ manifold. In fact, it is proved in [2] that L (there called the Alexandroff Half Line) can be made into a real analytic manifold (I thank the referee for this reference). Let us recall what it means for a real vector bundle E to be trivial. The bundle $E \xrightarrow{\pi} X$ is trivial if there is a bundle map $\phi: E \rightarrow \xi^n$ covering the identity: $X \xrightarrow{\phi} X$, where ξ^n is the trivial \mathbb{R}^n bundle over X and n is the dimension of the fibre of E. But this is easily seen to be equivalent to the existence of a bundle map $\phi: E \rightarrow \mathbb{R}^n$ where \mathbb{R}^n is considered as a bundle over a point $*$. (If $\omega: \xi^n \rightarrow \mathbb{R}^n$ is projection onto the coordinate of each fibre, then $\phi = \omega \circ \phi$ is such a map. If ϕ is given then $\phi^{-1}\mathbb{R}^n = \xi^n$ and $E \cong \phi^{-1}\mathbb{R}^n$ where ϕ^{-1} means the pull back under ϕ.) So let TL be the tangent bundle of L and ϕ be a C^∞ trivialization

$$TL \xrightarrow{\phi} \mathbb{R}^1$$

$$\pi \downarrow \downarrow$$

$$L \rightarrow *.$$

Then $g(x, y) = \phi(x) \cdot \phi(y)$ defines a C^∞ positive definite inner product on the fibres of TL (ϕ is an isomorphism on each fibre). Thus L would be a Riemannian manifold. But it is well known (see Kobayashi-Nomizu [3, p. 166]) that a Riemannian manifold (not necessarily assumed paracompact) has a metric space structure which defines the manifold topology. Now it is well known that L is not paracompact, and hence is not a metric space. This contradiction proves the theorem.

REFERENCES

UNIVERSITY OF CALIFORNIA, BERKELEY

Received by the editors January 24, 1969.

458