Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Tameness implied by extending a homeomorphism to a point


Author: L. D. Loveland
Journal: Proc. Amer. Math. Soc. 23 (1969), 287-293
MSC: Primary 54.78
DOI: https://doi.org/10.1090/S0002-9939-1969-0250282-7
MathSciNet review: 0250282
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] R. H. Bing, Approximating surfaces with polyhedral ones, Ann. of Math. (2) 65 (1957), 456-483. MR 0087090 (19:300f)
  • [2] -, A surface is tame if its complement is $ 1$-ULC, Trans. Amer. Math. Soc. 101 (1961), 294-305. MR 0131265 (24:A1117)
  • [3] -, Each disk in $ {E^3}$ contains a tame arc, Amer. J. Math. 84 (1962), 583-590. MR 0146811 (26:4331)
  • [4] C. E. Burgess, Characterizations of tame surfaces in $ {E^3}$, Trans. Amer. Math. Soc. 114 (1965), 80-97. MR 0176456 (31:728)
  • [5] -, Criteria for a $ 2$-sphere in $ {S^3}$ to be tame modulo two points, Michigan Math. J. 14 (1967), 321-330. MR 0216481 (35:7314)
  • [6] P. H. Doyle and J. G. Hocking, Special $ n$-manifolds with boundary, Proc. Amer. Math. Soc. 16 (1965), 133-135. MR 0175102 (30:5287)
  • [7] R. H. Fox and E. Artin, Some wild cells and spheres in three-dimension space, Ann of Math. (2) 49 (1948), 979-990. MR 0027512 (10:317g)
  • [8] D. S. Gillman, Side approximation, missing an arc, Amer. J. Math. 85 (1963), 459-476. MR 0160193 (28:3407)
  • [9] L. D. Loveland, Tame subsets of spheres in $ {E^3}$, Pacific J. Math. 19 (1966), 489-517. MR 0225309 (37:903)
  • [10] -, Conditions implying that a $ 2$-sphere is almost tame, Trans. Amer. Math. Soc. 131 (1968), 170-181. MR 0224074 (36:7121)
  • [11] -, Piercing points of crumpled cubes, Trans. Amer. Math. Soc. 143 (1969), 145-152. MR 0247619 (40:883)
  • [12] -, Sufficient conditions for a closed set to lie on the boundary of a $ 3$-cell, Proc. Amer. Math. Soc. 19 (1968), 649-652. MR 0227961 (37:3545)
  • [13] Joseph Martin, The sum of two crumpled cubes, Michigan Math. J. 13(1966), 147-151. MR 0190914 (32:8324)
  • [14] D. R. McMillan, Jr., Piercing a disk along a cellular set, Proc. Amer. Math. Soc. 19 (1968), 153-157. MR 0220266 (36:3332)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54.78

Retrieve articles in all journals with MSC: 54.78


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1969-0250282-7
Article copyright: © Copyright 1969 American Mathematical Society

American Mathematical Society