THE UNIVERSAL COMPACT
SUBUNITHETIC SEMIGROUP

JOHN A. HILDEBRANT

Compact subunithetic semigroups have been studied in [3] and [4], and related results can be found in [5], [6], and [7].

The structure of compact subunithetic semigroups is completely determined in this paper by exhibiting a universal compact subunithetic semigroup in the continuous homomorphism sense and a universal compact unithetic semigroup in the embedding sense. Generalizations of some of the results of [4] to include nonabelian semigroups are obtained.

If S is a compact [uniquely] divisible semigroup and x ∈ S, then there exists a [unique] minimal compact divisible subsemigroup S(x) of S which contains x. Moreover, each such S(x) is subunithetic [unithetic]. Thus the study of the structure of compact subunithetic semigroups is essential to the study of compact divisible semigroups.

Notation. The following notation will be used throughout this paper:

1. N = set of all positive integers;
2. Q = discrete additive semigroup of positive rationals;
3. I = [0, 1] with usual multiplication and topology;
4. Σ = a-adic solenoid with a = (2, 3, ...) [2, p. 114];
5. Σ* = universal compact solenoidal group [2, 25.19];
6. Φ = universal compact solenoidal semigroup [6, II].

A semigroup S is said to be [uniquely] divisible if for each y ∈ S and each n ∈ N, there exists an [unique] element x ∈ S such that y = x^n. A topological semigroup T is said to be subunithetic if T contains a dense homomorphic image of Q (Note that T is divisible and abelian). A subunithetic semigroup T is said to be unithetic if T is uniquely divisible. If T is a unithetic semigroup and σ: Q → T is a homomorphism such that σ(Q) is dense in T, then the element x = σ(1) is called a unithetic generator of T. (Note that the rational powers of x are dense in T.)

If S is a uniquely divisible topological semigroup and x ∈ S, then the subsemigroup [x] = {x^r: r ∈ Q} (closure in S) is the unithetic subsemigroup of S generated by x. Note that S is unithetic if and only if S = [x] for some x ∈ S.

Received by the editors October 24, 1968.

220
The Bohr (or almost periodic) compactification of a topological semigroup S is a pair (B, β) such that:

(i) B is a compact semigroup;
(ii) $\beta: S \rightarrow B$ is a continuous homomorphism of S into B such that $\beta(S)$ is dense in B; and
(iii) if $f: S \rightarrow T$ is a continuous homomorphism of S into a compact semigroup T, then there exists a unique continuous homomorphism $f^*: B \rightarrow T$ such that $f^* \beta = f$.

The existence and uniqueness of the Bohr compactification can be obtained as a consequence of the adjoint functor theorem [8]. Related results can be found in [1]. The semigroup Φ is the Bohr compactification of the additive semigroup R of nonnegative reals with the usual topology, and Σ^* is the Bohr compactification of the group $R \cup (-R)$. Both Φ and Σ^* are unithetic. One of the most essential results in this paper is that $\Sigma^* \times \Phi$ is the Bohr compactification of Q.

Lemma 1. Let $h \in \Sigma^*$ and $\{p_n\}$ a sequence of positive prime integers such that $(n+1)! < p_n$ and $p_n + n < p_{n+1}$ for each $n \in N$. Then there exists $g \in \Sigma^*$ such that $\{g^{1/p_n}\}$ converges to h.

Proof. We first prove this result for Σ. Note that Σ is the projective limit of copies of the circle group with bonding sequence $(2, 3, 4, \ldots)$. Let $h_0 = (h_1, h_2, \ldots)$ be an element of Σ. We will construct $g_0 = (g_1, g_2, \ldots)$ in Σ inductively such that $\{g_0^{1/p_n}\}$ converges to h_0. Let $g_1 = \ldots = g_{p_1-1} = \exp(2\pi i)$. Let $n \in N$, and suppose $g_{p_n-1} = \exp(2\pi i S_n)$ has been defined for some real number S_n. Now $h_n = \exp(2\pi i t_n)$ for some real number t_n. Then, since $h_0 \in \Sigma$, there exist real numbers $t_1, t_2, \ldots, t_{n-1}$ such that $(j+1)! t_{j+1} = t_1$ and $h_j = \exp(2\pi i t_j)$ for $j = 1, 2, \ldots, h-1$. Let

$$r_n = \frac{t_1 p_n - S_n (p_n - 1)!}{n! p_n}.$$

Then there exists an integer k_n such that $p_n r_n - 1 \leq k_n \leq p_n r_n + 1$. Since p_n is prime, $((p_n - 1)!) + 1)/p_n$ is an integer, and hence $m_n = k_n ((p_n - 1)! + 1)/p_n$ is an integer. Thus

$$t_1 - n!/p_n \leq (S_n + h! k_n) (p_n - 1)!/p_n - h! m_n \leq t_1 + n!/p_n.$$

It now follows that

$$t_{j+1} - \frac{n!}{p_n (j + 1)!} \leq \frac{(S_n + n! k_n)(p_n - 1)!}{p_n (j + 1)!} - \frac{n! m_n}{(j + 1)!} \leq t_{j+1} + \frac{n!}{p_n (j + 1)!}.$$

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
and \(n! \frac{m_n}{(j+1)!} \) is an integer for \(j = 0, 1, 2, \ldots, n-1 \). Define

\[
g_{p_n+j} = \exp\left(\frac{2\pi i (S_n + n!k_n)(p_n - 1)!}{(p_n + j)!}\right)
\]

for \(j = 0, 1, \ldots, n-1 \), and define \(g_j \) such that \(g_j = g_{j-1} \) for \(j = p_n + n, \ldots, p_{n+1} - 1 \). Thus \(g_0 \)

is defined inductively such that \(g_0 \in \Sigma \). Now

\[
g_{0/p_n} = (g_{p_n}^{p_n}, \ldots, g_{p_n+j}^{(p_n+j)!/p_n})
\]

and

\[
g_{p_n+j}^{(p_n+j)!/p_n} = \exp\left(\frac{2\pi i (S_n + n!k_n)(p_n - 1)!}{p_n(j+1)!}\right)
\]

for \(j = 0, 1, \ldots, n-1 \).

Since \(\{n!/p_n\} \) converges to 0, it follows from the last inequality above that \(\{g_{0/p_n}\} \) converges to \(h_0 \). This proves the result for \(\Sigma \).

Let \(\Sigma_\alpha = \Sigma \) for \(\alpha \in I \). Then \(\Sigma^* = \prod \{\Sigma_\alpha : \alpha \in I\} \). Let \(\pi_\alpha : \Sigma^* \to \Sigma_\alpha \) be the projection map, and \(h_\alpha = \pi_\alpha(h) \) for each \(\alpha \in I \). Then there exists \(g_\alpha \in \Sigma_\alpha \) such that \(\{g_{0/p_n}\} \) converges to \(h_\alpha \) for each \(\alpha \in I \). Let \(g \in \Sigma^* \) such that \(\pi_\alpha(g) = g_\alpha \) for each \(\alpha \in I \). Then \(\{g_{0/p_n}\} \) converges to \(h \), and the proof of the lemma is complete.

Theorem 2. The Bohr compactification of \(Q \) is \(\Sigma^* \times \Phi \).

Proof. Let \(x \) be a unithetic generator of \(\Phi \) and 1 the identity of \(\Phi \). Let \(h \) be a unithetic generator of \(\Sigma^* \) and \(\{p_n\} \) a sequence of positive prime integers such that \((n+1)! < p_n \) and \(p_n + h < p_{n+1} \) for each \(n \in N \). Then, by Lemma 1, there exists \(g \in \Sigma^* \) such that \(\{g_{0/p_n}\} \) converges to \(h \). Thus \(\{(g, x)_{0/p_n}\} \) converges to \((h, 1) \). Since \(h \) is a unithetic generator of \(\Sigma^* \), it follows that \(\Sigma^* \times \{1\} \subseteq [(g, x)] \). Let \((a, b) \in \Sigma^* \times \Phi \). Then there exists \(u \in \Sigma^* \) such that \((u, b) \in [(g, x)] \). Let \(u^{-1} \) denote the inverse of \(u \) in \(\Sigma^* \). Then \((u^{-1}a, 1) \in [(g, x)] \) and hence \((a, b) = (u, b) \cdot (u^{-1}a, 1) \) is in \([(g, x)] \). It follows that \(\Sigma^* \times \Phi \) is unithetic, and that \((g, x) \) is a unithetic generator of \(\Sigma^* \times \Phi \). Define \(\beta : Q \to \Sigma^* \times \Phi \) by \(\beta(r) = (g, x)^r \) for each \(r \in Q \). Then \(\beta \) is a homomorphism such that \(\beta(Q) \) is dense in the compact semigroup \(\Sigma^* \times \Phi \). Let \(S \) be a compact subunithetic semigroup, \(e \) the identity of \(S \), and \(f : Q \to S \) a homomorphism such that \(f(Q) \) is dense in \(S \). Then \(S \) contains a compact solenoidal subsemigroup \(T \) such that \(S = H(e)T \). Define \(\phi : H(e) \times T \to S \) by \(\phi(s, t) = st; s \in H(e), t \in T \). Then \(\phi \) is a continuous onto homomorphism since \(S \) is abelian. Let \(s_0 \in H(e) \) and \(t_0 \in T \) such that \(\phi(s_0, t_0) = f(1) \). Then there exist continuous onto homomorphisms \(\alpha : \Sigma^* \to H(e) \) and \(\lambda : \Phi \to T \) such that \(\alpha(g) = s_0 \) and \(\lambda(x) = t_0 \). Define \(f^* : \beta(Q) \to S \) by \(f^*(\beta(r)) = \phi(\alpha(g^r), \lambda(x^r)) \); \(r \in Q \). Then, since \(\beta(Q) \)
is dense in $\Sigma^* \times \Phi$, f^*_x has a unique extension to $f^*: \Sigma^* \times \Phi \to S$, and $f^* \beta = f$. It follows that $(\Sigma^* \times \Phi, \beta)$ is the Bohr compactification of Q.

Corollary 3. A compact semigroup is subunithetic if and only if it is a continuous homomorphic image of $\Sigma^* \times \Phi$.

Corollary 4. Let S and T be compact semigroups. Then $S \times T$ is sub-unithetic if and only if S and T are sub-unithetic and either S or T is a group.

Corollary 5. The semigroup $((\Sigma^* \times I)/(\Sigma^* \times \{0\})) \times \Sigma^*$ is unithetic.

Theorem 6. Let S be a compact semigroup. Then these are equivalent:

(i) S is uniquely divisible;

(ii) each component of S is a uniquely divisible subsemigroup of S;

(iii) if $x \in S$, then there exists a unique subsemigroup $S(x)$ of S, which is minimal with respect to being a compact divisible subsemigroup of S containing x; and each such $S(x)$ is unithetic subunithetic.

Proof. The proof follows from the fact that $\Sigma^* \times \Phi$ is connected, and, if S is divisible, and $x \in S$, then there exists a continuous homomorphism $\lambda: \Sigma^* \times \Phi \to S$ such that $\lambda(y) = x$, for some unithetic generator y of $\Sigma^* \times \Phi$.

Notation. If S is a semigroup, then $E(S)$ denotes the set of idempotent elements of S.

Corollary 7. Let S be a compact totally disconnected semigroup. Then S is divisible if and only if $S = E(S)$.

Corollary 8. A finite semigroup S is divisible if and only if $S = E(S)$.

Corollary 9. Let S be a compact semigroup. Then each element of $S \setminus E(S)$ lies on a unique usual thread in S if and only if S is uniquely divisible and has degenerate subgroups.

Theorem 10. Let S be a compact unithetic semigroup. Then S is topologically isomorphic to a subsemigroup of $((\Sigma^* \times I)/(\Sigma^* \times \{0\})) \times \Sigma^*$.

Proof. Let 1 denote the identity of S, K the minimal ideal of S, and $h: H(1) \to \Sigma^*$ and $k: K \to \Sigma^*$ injections. (See [3, Theorem 2.3 and Theorem 3.1].) Let $\gamma: S/K \to (H(1) \times I)/(H(1) \times \{0\})$ be a topological isomorphism. (See [3, Theorem 3.4].) Let $j: I \to I$ be the identity map, $\alpha: H(1) \times I \to (H(1) \times I)/(H(1) \times \{0\})$ the natural maps, and $\lambda: \Sigma^* \times I \to (\Sigma^* \times I)/(\Sigma^* \times \{0\})$ the natural map. Then there exists an induced injection ϕ such that the diagram:
commutes. Let \(e \) denote the identity of \(K \) and define \(\sigma: S \to (S/K) \times K \) by \(\sigma(x) = (\psi(x), ex); x \in S, \) where \(\psi: S \to S/K \) is the natural map. Then \(\sigma \) is an injection. Let \(\rho: \Sigma^* \to \Sigma^* \) be the identity map. Then

\[
S \xrightarrow{\sigma} (S/K) \times K \xrightarrow{\gamma \times k} \frac{(H(1) \times I)}{(H(1) \times \{0\})} \times \frac{(\Sigma^* \times I)}{(\Sigma^* \times \{0\})} \times \Sigma^*
\]
defines the desired injection, and the proof of the theorem is complete.

References