APPROXIMATE EVALUATION OF A CLASS OF WIENER INTEGRALS

J. YEH

1. It is well known that for every $\alpha \in (0, \frac{1}{2})$ almost every element x of the Wiener space C_w consisting of all the real valued functions $x(t), t \in [0, 1]$, with $x(0) = 0$ satisfies the Hölder condition $|x(t') - x(t'')| \leq h|t' - t''|^{\alpha}$ for some $h > 0$ which depends on x and α. Let $\phi_{a}[x]$ be the infimum of all such $h > 0$ for fixed x and α. In [7] we showed that for every $\alpha \in (0, \frac{1}{2})$ the functional $\phi_{a}[x]$ is Wiener integrable for every $p \geq 0$ and in fact

$$\int_{C_w} \phi_{a}^{p}[x] d\mu[x] \leq 2^{p}(1 - 2^{-\alpha})^{-p} \cdot \sum_{m=1}^{\infty} (m + 1)^{p}m^{-(m+1)} < \infty.$$

We then applied this result to estimate errors in approximating Wiener integrals of a class of functionals by Lebesgue integrals in Euclidean spaces. In the present paper we apply this method to yet another class of Wiener integrals. Our result is the following:

Theorem. Let $f(t)$ be real valued for $t \in [0, 1]$ and satisfy

(1) $\left| f(t') - f(t'') \right| \leq C |t' - t''|^\gamma$

where $C, \gamma > 0$ and let $A = \max_{[0,1]} |f(t)|$. Let $g(u)$ be real valued for all real u and satisfy

(2) $\left| g(u') - g(u'') \right| \leq B |u' - u''|

with $B > 0$. Then the functionals $F[x]$ and $F_{n}[x]$ defined on C_w by

(3) $F[x] = g \left\{ \int_{0}^{1} f(t)x^{2}(t)dt \right\}$

(4) $F_{n}[x] = g \left\{ \frac{1}{n} \sum_{k=1}^{n} f \left(\frac{k}{n} \right)x^{2} \left(\frac{k}{n} \right) \right\}$, $n = 1, 2, \cdots$

Received by the editors October 18, 1967.

1 This research was supported in part by National Science Foundation Grant GP-5436.
are Wiener measurable, and for \(\alpha \in (0, \frac{1}{6}) \)

\[
\left| \int_{C_w} F[x] d_w x - \int_{C_w} F_n[x] d_w x \right| \\
\leq \frac{2BC}{(\gamma + 1)n^\gamma} + \frac{2^{3/2}AB}{(\alpha + 1)n^\alpha} \left\{ \int_{C_w} \phi_\alpha^2[x] d_w x \right\}^{1/2}.
\]

The Wiener integral \(\int_{C_w} F_n[x] d_w x \) which approximates \(\int_{C_w} F[x] d_w x \) can be evaluated as a Lebesgue integral in the \(n \)-dimensional Euclidean space according to the well-known fact that if \(G(\xi_1, \ldots, \xi_n) \) is a Lebesgue measurable function defined on the \(n \)-dimensional Euclidean space and \(0 = t_0 < t_1 < \cdots < t_n \leq 1 \) then \(G[x(t_1), \ldots, x(t_n)] \) is Wiener measurable and furthermore

\[
\int_{C_w} G[x(t_1), \cdots, x(t_n)] d_w x = \left\{ (2\pi)^n \sum_{k=1}^n (t_k - t_{k-1}) \right\}^{-1/2}
\]

\[
\left. \int_{-\infty}^\infty \cdots \int_{-\infty}^\infty G(\xi_1, \cdots, \xi_n) \exp \left\{ - \sum_{k=1}^n \frac{(\xi_k - \xi_{k-1})^2}{2(t_k - t_{k-1})} \right\} d\xi_1 \cdots d\xi_n \right|\text{ in the sense that the existence of one side implies that of the other and the equality of the two.}
\]

Thus for our \(F_n[x] \) we have

\[
\int_{C_w} F_n[x] d_w x = (2\pi)^{-n/2} n^{n/2} \int_{-\infty}^\infty \cdots \int_{-\infty}^\infty \left\{ \frac{1}{n} \sum_{k=1}^n f \left(\frac{k}{n} \right) \xi_k \right\}^2 \exp \left\{ - \frac{n}{2} \sum_{k=1}^n (\xi_k - \xi_{k-1})^2 \right\} d\xi_1 \cdots d\xi_n.
\]

2. In proving our theorem we need to estimate the Wiener integral

\[
\int_{C_w} |||x|||^2 d_w x \quad \text{where } |||x||| = \max_{[0,1]} |x(t)|.
\]

In [2] P. Erdös and M. Kac showed that if \(X_1, X_2, X_3, \cdots \) are independent identically distributed random variables each having mean value 0 and standard deviation 1 and if \(s_k = X_1 + X_2 + \cdots + X_k \) then

\[
\lim_{n \to \infty} \text{prob.}\left\{ \max(s_1, s_2, \cdots, s_n) < \alpha n^{1/2} \right\} = \sigma(\alpha)
\]

where \(\sigma(\alpha) = 0 \) for \(\alpha \leq 0 \) and

\[
\sigma(\alpha) = \left(\frac{2}{\pi} \right)^{1/2} \int_0^\alpha \exp \left\{ - \frac{u^2}{2} \right\} du \quad \text{for } \alpha \geq 0.
\]

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
From this follows immediately

Theorem A. Let \(f(u) \) be measurable on \([0, \infty)\). Then if either of the following integrals exists, both exist and they are equal:

\[
\int_{c_w} f(\max x(t)) d\omega x = \left(\frac{2}{\pi}\right)^{1/2} \int_0^\infty f(u) \exp\left\{ -\frac{u^2}{2} \right\} du.
\]

Corollary B. Let \(f(u) \) be measurable and nonnegative on \([0, \infty)\). Then

\[
\left(\frac{2}{\pi}\right)^{1/2} \int_0^\infty f(u) \exp\left\{ -\frac{u^2}{2} \right\} du \leq \int_{c_w} f(||x||) d\omega x
\]

\[
\leq 2 \left(\frac{2}{\pi}\right)^{1/2} \int_0^\infty f(u) \exp\left\{ -\frac{u^2}{2} \right\} du
\]

where the left-hand inequality holds provided that \(f(u) \) is monotonically increasing.

Corollary B follows from Theorem A and the observation that

\[
|||x||| = \max\{u, -u\}
\]

so that

\[
|||x||| = \max\{\max x(t), \max [-x(t)]\}
\]

and hence if \(f(u) \geq 0 \) (and for the left-hand inequality, \(f \) is also monotonically increasing),

\[
f(\max x(t)) \leq f(|||x|||) \leq f(\max x(t)) + f(\max [-x(t)])
\]

so that finally

\[
\int_{c_w} f(\max x(t)) d\omega x \leq \int_{c_w} f(|||x|||) d\omega x
\]

\[
\leq \int_{c_w} f(\max x(t)) d\omega x + \int_{c_w} f(\max [-x(t)]) d\omega x
\]

\[
= 2 \int_{c_w} f(\max x(t)) d\omega x.
\]

3. Proof of the theorem. From the continuity of \(g(u) \), the function

\[
g \left\{ \frac{1}{n} \sum_{k=1}^n \left(\frac{k}{n} \right) \xi_k \right\}
\]

is continuous on the \(n \)-dimensional Euclidean space with elements \((\xi_1, \cdots, \xi_n)\) and hence \(F_n [x] \) as defined by (4) is Wiener measurable.
Since \(x(t) \) and \(f(t) \) are continuous the Riemann sum in (4) converges to the Riemann integral in (3) as \(n \to \infty \). Then from the continuity of \(g(u) \),
\[
\lim_{n \to \infty} F_n[x] = F[x]
\]
for every \(x \in C_w \). This establishes the Wiener measurability of \(F[x] \). Now
\[
\left| \int_0^1 f(t)x^2(t)dt - \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n} \right) x^2\left(\frac{k}{n} \right) \right|
\]

\[
\leq \sum_{k=1}^n \int_{(k-1)/n}^{k/n} \left| f(t)x^2(t) - f\left(\frac{k}{n} \right) x^2\left(\frac{k}{n} \right) \right| dt
\]

\[
\leq \sum_{k=1}^n \int_{(k-1)/n}^{k/n} \left| f(t)x^2(t) - f\left(\frac{k}{n} \right) x^2(t) \right| dt
\]

\[
+ \sum_{k=1}^n \int_{(k-1)/n}^{k/n} \left| f\left(\frac{k}{n} \right) x^2(t) - f\left(\frac{k}{n} \right) x^2\left(\frac{k}{n} \right) \right| dt
\]

\[
\leq \|x\|^2 \sum_{k=1}^n \int_{(k-1)/n}^{k/n} \left| f(t) - f\left(\frac{k}{n} \right) \right| dt
\]

\[
+ 2A\|x\| \sum_{k=1}^n \int_{(k-1)/n}^{k/n} \left| x(t) - x\left(\frac{k}{n} \right) \right| dt
\]

\[
\leq C\|x\|^2 \sum_{k=1}^n \int_{(k-1)/n}^{k/n} \left(\frac{k}{n} - t \right)^\gamma dt
\]

\[
+ 2A\|x\| \sum_{k=1}^n \int_{(k-1)/n}^{k/n} \phi_\alpha[x] \left(\frac{k}{n} - t \right)^\alpha dt
\]

\[
\leq \frac{C}{(\gamma + 1)n^\gamma} \|x\|^2 + \frac{2A}{(\alpha + 1)n^\alpha} \|x\| \phi_\alpha[x].
\]

Thus by (2)
\[
\left| F[x] - F_n[x] \right| = \left| g \left\{ \int_0^1 f(t)x^2(t)dt \right\} - g \left\{ \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n} \right) x^2\left(\frac{k}{n} \right) \right\} \right|
\]

\[
\leq B \left| \int_0^1 f(t)x^2(t)dt - \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n} \right) x^2\left(\frac{k}{n} \right) \right|
\]

\[
\leq \frac{BC}{(\gamma + 1)n^\gamma} \|x\|^2 + \frac{2AB}{(\alpha + 1)n^\alpha} \|x\| \phi_\alpha[x]
\]

and hence
\[\left| \int_{c_w} F[x]d\omega x - \int_{c_w} F_n[x]d\omega x \right| \leq \frac{BC}{(\gamma + 1)n^\gamma} \int_{c_w} |||x|||^2d\omega x + \frac{2AB}{(\alpha + 1)n^\alpha} \left\{ \int_{c_w} |||x|||^2d\omega x \right\}^{1/2} \left\{ \int_{c_w} \phi_n^2[x]d\omega x \right\}^{1/2}. \]

Finally according to Corollary B

\[\int_{c_w} |||x|||^2d\omega x \leq 2\left(\frac{2}{\pi} \right)^{1/2} \int_{0}^{\infty} u^2 \exp\left\{ -\frac{u^2}{2} \right\} du = 2. \]

This completes the proof of (5).

BIBLIOGRAPHY

UNIVERSITY OF CALIFORNIA, IRVINE