GENERATING FUNCTIONS FOR JACOBI AND LAGUERRE POLYNOMIALS

H. M. SRIVASTAVA

Let \(v \) be a function of \(t \) defined by

\[
(1) \quad v = t(1 + v)^{b+1}, \quad v(0) = 0.
\]

Then it follows from Lagrange’s expansion formula [6, Vol. I, p. 126, Ex. 212] that

\[
(2) \quad \frac{(1 + v)^{a+1}}{1 - bv} = \sum_{n=0}^{\infty} \left(a + (b + 1)n \right) \frac{t^n}{n!}.
\]

Making use of the formula (2), Carlitz [2] has proved that the Laguerre polynomial \(L_n^{(a+b,n)}(x) \), where

\[
(3) \quad L_n^{(a)}(x) = \sum_{k=0}^{n} (-1)^k \binom{a+n}{n-k} \frac{x^k}{k!},
\]

satisfies a generating relation in the form

\[
(4) \quad \sum_{n=0}^{\infty} L_n^{(a+b,n)}(x) t^n = \frac{(1 + v)^{a+1}}{1 - bv} \exp(-xv),
\]

where \(v \) is given by (1) and \(a, b \) are arbitrary complex numbers. Note that the special case of (4) when \(b \) is an arbitrary integer was proved earlier by Brown [1].

In terms of the generalized hypergeometric function

\[
(5) \quad {}_pF_q \left[\begin{array}{c} \alpha_1, \ldots, \alpha_p; \\ \beta_1, \ldots, \beta_q; \end{array} \right] x = \sum_{n=0}^{\infty} \frac{\prod_{j=1}^{p} (\alpha_j)_n}{\prod_{j=1}^{q} (\beta_j)_n} \frac{x^n}{n!},
\]

where

\[
(6) \quad (\lambda)_n = \lambda(\lambda + 1)(\lambda + 2) \cdots (\lambda + n - 1), \quad n \geq 1, \quad (\lambda)_0 = 1,
\]

the generating relation (4) assumes the form
\[
\sum_{n=0}^{\infty} \binom{a + (b + 1)n}{n} \frac{-n;}{1 + a + bn; x} t^n
\]
\[
= \frac{(1 + v)^{a+1}}{1 - bv} \exp(-xv).
\]

In (7) if we replace \(x\) by \(xz\), multiply both sides by \(z^\lambda-1\) and take their Laplace transforms with respect to the variable \(z\), we shall readily obtain

\[
\sum_{n=0}^{\infty} \binom{a + (b + 1)n}{n} \frac{-n, \lambda;}{1 + a + bn; x} t^n
\]
\[
= \frac{(1 + v)^{a+1}}{1 - bv} (1 + xv)^{-\lambda},
\]

where the binomial \((1+\lambda v)^{-\lambda}\) may be written as an \(1F_0\).

The form of (8) suggests the existence of the general formula

\[
\sum_{n=0}^{\infty} \binom{a + (b + 1)n}{n} \frac{-n, \alpha_1, \cdots, \alpha_p;}{1 + a + bn, \beta_1, \cdots, \beta_q; x} t^n
\]
\[
= \frac{(1 + v)^{a+1}}{1 - bv} \frac{pF_q}{pF_q} \left[\begin{array}{c} \alpha_1, \cdots, \alpha_p; \\ \beta_1, \cdots, \beta_q; \\ -xv \end{array} \right],
\]

where \(p, q\) are nonnegative integers, the \(\alpha\)'s and \(a, b\) take general values, real or complex, and

\[
\beta_j \neq 0, -1, -2, \cdots, \quad j = 1, 2, \cdots, q.
\]

The derivation of (9) from (7) and (8) by the principle of multi-dimensional mathematical induction would require the Laplace and inverse Laplace transform techniques illustrated, for instance, by the author [7].

For a direct proof without using (7) and (8) we notice that, in view of the definition (5),

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
\[\sum_{n=0}^{\infty} \binom{a + (b + 1)n}{n} F_{q+1}^{p+1} \left[\begin{array}{c} -n, \alpha_1, \ldots, \alpha_p; \\ 1 + a + bn, \beta_1, \ldots, \beta_q; \end{array} \right] t^n \]

\[= \sum_{n=0}^{\infty} t^n \sum_{k=0}^{n} (-1)^k \binom{a + (b + 1)n}{n - k} \frac{\prod_{j=1}^{p} (\alpha_j)_k}{\prod_{j=1}^{q} (\beta_j)_k} \frac{x^k}{k!} \]

\[= \sum_{k=0}^{\infty} (-1)^k \frac{\prod_{j=1}^{p} (\alpha_j)_k}{\prod_{j=1}^{q} (\beta_j)_k} \frac{x^k}{k!} \sum_{n=0}^{\infty} \binom{a + (b + 1)n}{n - k} t^n \]

\[= \sum_{k=0}^{\infty} (-1)^k \frac{\prod_{j=1}^{p} (\alpha_j)_k}{\prod_{j=1}^{q} (\beta_j)_k} \frac{x^k t^k}{k!} \frac{(1 + v)^{a + (b + 1)k + 1}}{1 - bv}, \]

by (2), and the formula (9) follows immediately. We can easily attribute a direct proof to the formula (8) which obviously corresponds to the special case \(p = 1, q = 0 \) of (9).

A similar generalization of Carlitz's formula \([2, \text{p. 827, Equation (16)}]\) has the form

\[\sum_{n=0}^{\infty} \binom{-a - bn}{n} F_{q+1}^{p+1} \left[\begin{array}{c} -n, \alpha_1, \ldots, \alpha_p; \\ 1 - a - (b + 1)n, \beta_1, \ldots, \beta_q; \end{array} \right] t^n \]

(11)

\[= \frac{A(-t, a, b)}{1 - B(-t, b)} F_q^{p} \left[\begin{array}{c} \alpha_1, \ldots, \alpha_p; \\ \beta_1, \ldots, \beta_q; \end{array} \right] \frac{xB(-t, b)}{1 - B(-t, b)}, \]

where, for convenience,

(12) \[B(t, b) = -\sum_{n=1}^{\infty} \binom{(b + 1)n}{n - 1} \frac{t^n}{n} \]

and

(13) \[A(t, a, b) = \frac{(1 - B(t, b))^{a+1}}{1 + bB(t, b)}. \]

Indeed the formula (11) is obtainable from (9) by replacing \(a \) by \(-a\) and \(b \) by \(-(b+1)\).
It may be of interest to remark that for \(b = 0 \) and \(b = -1 \) the formula (9) yields Chaundy's results (25) and (27) respectively (see [4, p. 62]). For \(b = -\frac{1}{2} \), (9) reduces to the generating relation (7), p. 264 of Brown's recent paper.²

For the Jacobi polynomial defined by

\[
P_{n}^{(\alpha, \beta)}(x) = \sum_{k=0}^{n} \binom{\alpha + n}{k} \binom{\beta + n}{n - k} \left(\frac{x - 1}{2} \right)^{n-k} \left(\frac{x + 1}{2} \right)^{k},
\]

it is easy to show from the identity (4.22.1) of [8, p. 63] that

\[
P_{n}^{(\alpha - n, \beta - n)}(x) = \binom{n - \alpha - \beta - 1}{n} (1 - x)^n \frac{2}{1-x} _2F_1 \left[\begin{array}{c} -n, -\alpha; \\ -\alpha - \beta; \end{array} \right],
\]

and therefore (8) gives us the elegant generating function

\[
\sum_{n=0}^{\infty} P_{n}^{(\alpha-n, \beta-(b+1)n)}(x) t^n = (1 + w)^{-\alpha-\beta} (1 + bw)^{-1} \left(1 + \frac{2w}{1-x} \right)^{\alpha},
\]

where

\[
w = \frac{1}{2} (1 - x) (1 + w)^{b+1}.
\]

Evidently (16) reduces to the known formula [3, p. 88]

\[
\sum_{n=0}^{\infty} P_{n}^{(\alpha-n, \beta-n)}(x) t^n = [1 + \frac{1}{2}(x + 1) t]^{\alpha} [1 + \frac{1}{2}(x - 1) t]^{\beta}
\]

when \(b = 0 \), and for \(b = -1 \) it leads us to Feldheim's result [5, p.120]

\[
\sum_{n=0}^{\infty} P_{n}^{(\alpha-n, \beta-n)}(x) t^n = (1 + t)^{\alpha} [1 - \frac{1}{2}(x - 1) t]^{-\alpha-\beta-1}.
\]

Now from the definition (14) we readily have [8, p. 61]

\[
P_{n}^{(\alpha, \beta)}(x) = \binom{\alpha + n}{n} _2F_1 \left[\begin{array}{c} -n, 1 + \alpha + \beta + n; \\ 1 + \alpha; \end{array} \right],
\]

whence it follows at once that

Consequently, \((8) \) gives us another class of generating functions for the Jacobi polynomial in the form

\[
\sum_{n=0}^{\infty} P_n^{(a+bn, \beta-(b+1)n)}(x) t^n = (1 + v)^{a+1} (1 - bv)^{-1} [1 - (x - 1)v]^{-a - \beta - 1},
\]

where \(v \) is defined by \((1) \) and \(b, \alpha, \beta \) are unrestricted, in general.

For \(b = -1 \), \((22) \) leads us again to Feldheim's formula \((19) \); when \(b = 0 \), it reduces to the generating relation

\[
\sum_{n=0}^{\infty} P_n^{(a, \beta-n)}(x) t^n = (1 - t)^{\beta} [1 - \frac{1}{2}(x + 1)t]^{-a - \beta - 1}
\]

also due to Feldheim [5, p. 120].

Finally, we remark that the special case \(b = - \frac{1}{2} \) of our formula \((22) \) corresponds to

\[
\sum_{n=0}^{\infty} P_n^{(a-n/2, \beta-n/2)}(x) t^n = [1 + u(t)]^{a+1} [1 + \frac{1}{2}u(t)]^{-1} [1 - \frac{1}{2}(x - 1)u(t)]^{-a - \beta - 1},
\]

where

\[
u(t) = \frac{1}{2}t[t + \sqrt{t^2 + 4)].\]

The formula \((24) \) appears in Brown's recent paper referred to earlier.

Added in Proof. In a private communication to the author, Professor L. Carlitz suggests that following the method of proof of the formula \((9) \) one can readily obtain its straightforward generalization in the form

\[
\sum_{n=0}^{\infty} \binom{a + (b + 1)n}{n} t^n \sum_{k=0}^{n} \frac{(-n)_k c_k}{(1 + a + bn)_k} \frac{x^k}{k!} = \frac{(1 + v)^{a+1}}{1 - bv} \sum_{k=0}^{\infty} \frac{(-ax)^k}{k!},
\]
where the c_k are arbitrary constants and v is defined by (1). It seems worthwhile to remark here that further extensions of (*) form the subject-matter of our discussion in a forthcoming paper.

References

West Virginia University