ON THE EXISTENCE OF INCOMPRESSIBLE SURFACES
IN CERTAIN 3-MANIFOLDS

WOLFGANG HEIL

If M is the closure of the complement of a regular neighborhood of a nontrivial knot in S^3 then there exists a nonsingular torus T embedded in M, which is incompressible (i.e. the inclusion $i: T \to M$ induces a monomorphism $i_*: \pi_1(T) \to \pi_1(M)$). If F is any orientable closed incompressible surface embedded in M then $\pi_1(M)$ contains $\pi_1(F)$ as a subgroup. L. Neuwirth [3, Question T] asks whether the converse is true: If $\pi_1(M)$ contains the group π of a closed (orientable) surface of genus $g > 1$, does there exist a nonsingular closed surface F of genus g whose fundamental group is injected monomorphically into $\pi_1(M)$ by inclusion? As a partial answer we show that not for every such $\pi \subset \pi_1(M)$ there exists an incompressible $F \subset M$. The question remains open whether M contains incompressible closed surfaces of genus > 1. We show that for torus knots M does not contain such surfaces, by showing that $\pi_1(M)$ does not contain subgroups π.

1. Isotopic surfaces. Let M be a compact 3-manifold (orientable or nonorientable). A “surface F in M” always means a 2-sided embedded surface F in M such that $F \cap \partial M = \partial F$. F is incompressible in M iff $F \neq S^2$ and $\ker(i_*: \pi_1(F) \to \pi_1(M)) = 1$, where $i: F \to M$ is the inclusion. We say M is P^2-irreducible iff M is irreducible (every 2-sphere bounds a ball) and does not contain (2-sided) projective planes. M is called boundary-irreducible iff ∂M is a system of incompressible surfaces.

Theorem 1. Let M be a P^2-irreducible 3-manifold. Let G be an incompressible surface in M and $\pi \subset i_*\pi_1(G) \subset \pi_1(M)$. If there exists an incompressible surface $F \subset M$ such that $\partial F \subset \partial G \cap \partial F$ and $i_*\pi_1(F) = \pi$, then F is isotopic to G.

This follows from theorems obtained by Waldhausen [5]. In particular we need the following:

Proposition [5, Proposition 5.4]. Let M be P^2-irreducible. Let F and G be incompressible surfaces in M, $\partial F \subset \partial F \cap \partial G$, such that $F \cap G$ consists of mutually disjoint simple closed curves (with transversal intersection at any curve which is not in ∂F). Let H be a surface and suppose there is a map $f: H \times I \to M$ such that $f| H \times 0$ is a covering map onto F.

Received by the editors April 21, 1969.
and \(f(\partial (H \times I) - H \times 0) \subset G \). Then there is a surface \(\tilde{H} \) and an embedding \(\tilde{H} \times I \to M \) such that \(\tilde{H} \times 0 = \tilde{F} \subset F \); \(\text{Cl}(\partial (\tilde{H} \times I) - \tilde{H} \times 0) = \tilde{G} \subset G \) and \(\tilde{F} \cap \tilde{G} = \partial \tilde{F} \); moreover if \(\tilde{G} \cap \tilde{F} \neq \partial \tilde{G} \) then \(\tilde{F} \) and \(\tilde{G} \) are discs.

Waldhausen proves this for orientable \(M, F, G \), using his Lemmas 5.1 to 5.3 in [5]. In the nonorientable case 5.1 of [5] may be proved by looking at the orientable 2-sheeted covering of \(M \) (see [2]). Then the proofs of Lemmas 5.2 to 5.4 in [5] go through in the nonorientable case as well, noting that \(F \) and \(G \) are 2-sided in \(M \).

Proof of the theorem. Suppose \(F \) exists. By small isotopic deformations, constant on \(\partial M \), we may assume that \(G \cap F \) consists of a system of closed curves, the number of which is minimal. We claim:

There exists a surface \(H \) homeomorphic to \(F \) and a map \(f : H \times I \to M \) such that \(f|_H \times 0 \) is a homeomorphism onto \(F \) and \(f|_H \times 1 \cup \partial H \times I \subset G \). For, let \(f|_H \times 0 = i : F \to M \). Since \(0 \leq i_\ast(G) \) and \(\partial F \subset \partial F \cap \partial G \), we can define the map on \(H \times 0 \cup \partial H \times I \cup H^{(1)} \times I \), where \(H^{(1)} \) is the 1-skeleton of \(H \), such that \(f|_H \times 1 \subset G \). Since \(G \) is incompressible, we can extend this map to a map from \(\partial (H \times I) \to M \). Now \(\pi_2(M) = 0 \) (by our assumption on \(M \) and the projective plane theorem [1]; in fact it follows from the Hurewicz-isomorphism on the universal cover that \(M \) is aspherical), therefore \(f \) can be extended to a map \(H \times I \to M \). The rest of the proof copies the proof of Corollary (5.5) in [5]: by the proposition, there exist pieces \(\tilde{G} \subset G \) and \(\tilde{F} \subset F \) which are parallel in \(M \) such that \(\tilde{F} \cap \tilde{G} = \partial \tilde{F} \). If \(\tilde{G} \cap \tilde{F} \neq \partial \tilde{G} \) then \(\tilde{F} \cup \tilde{G} \) bounds a ball, since \(M \) is irreducible. This ball contains a piece \(F' \subset F \). Deforming \(F' \) out of this ball across \(\tilde{G} \), we could make \(\tilde{F} \cap \tilde{G} \) smaller, a contradiction. Hence we have \(\tilde{G} \cap \tilde{F} = \partial \tilde{G} \). Therefore there exists an isotopic deformation of \(F \) (constant on \(F \setminus \tilde{F} \)) which throws \(\tilde{F} \) onto \(\tilde{G} \). If \(\tilde{F} \) would not be all of \(F \), then we could deform \(\tilde{F} \setminus \partial F \cap \tilde{G} \) out of \(G \) (keeping \(\partial F \) fixed) and thereby reduce the intersection number \(F \cap G \). Hence \(F = \tilde{F} \), \(F \cap G = \partial F \subset \partial F \cap \partial G \), hence \(\partial \tilde{G} = \tilde{G} \cap F \subset \partial M \) and since \(G \cap \partial M = \partial G \) we have \(G = \tilde{G} \).

Let \(\mathfrak{F} \) be a subgroup of \(\pi_1(M) \). We say \(\mathfrak{F} \) is carried by a surface \(F \subset M \) iff there exists an embedding \(i : F \to M \) such that \(i_\ast \pi_1(F) = \mathfrak{F} \) and \(\ker i_\ast = 1 \).

Corollary. Let \(M \) be \(P^2 \)-irreducible. Let \(G \) be a closed incompressible surface of genus \(> 1 \) in \(M \). Then there exists a subgroup \(\mathfrak{F} \subset \pi_1(M) \) which is not carried by a surface \(F \subset M \) but is isomorphic to \(\pi_1(F) \). (In fact, if \(G \) is not a Klein bottle there exist infinitely many non-isomorphic subgroups of \(\pi_1(M) \) having this property.)

Proof. Let \(F \) be a finite covering of \(G \) such that \(F \) is not homeomorphic to \(G \). (Since \(G \neq S^2, P^2, \text{Torus}, \text{Klein bottle} \), we can construct
infinitely many topologically different compact F's.) Then $p_*\pi_1(F) = \mathfrak{F}$ (where $p: F \to G$ is the covering map) is a subgroup of $\pi_1(G)$, hence of $i_*\pi_1(G) \subset \pi_1(M)$. If \mathfrak{F} would be carried by F, then by Theorem 1, F would be isotopic to G, a contradiction.

In particular this corollary applies to complements of nontrivial knots as mentioned in the introduction.

2. **Surfaces in 3-manifolds which groups have a center.** Let \mathfrak{F} be the fundamental group of a closed surface F. If F is orientable suppose genus $(F) > 1$, if F is nonorientable let genus $(F) > 2$.

Lemma. Let M be an irreducible (compact) 3-manifold with $\pi_1(M) \approx \mathfrak{F} \times \mathbb{Z}$, then M is a fibre bundle over S^1 with fiber F.

This is a special case of Stallings theorem [4].

Theorem 2. Let M be a P^2-irreducible, boundary irreducible 3-manifold and suppose the center \mathfrak{F} of $\pi_1(M)$ is infinite. If $\partial M \neq \emptyset$, then $\pi_1(M)$ does not contain a subgroup \mathfrak{F} as above.

Proof. Suppose there exists $\mathfrak{F} \subset \pi_1(M)$. Then, since the center of \mathfrak{F} is trivial, $\mathfrak{F} \cap \mathfrak{F} = 1$. If $t \in \mathfrak{F}$ is of infinite order, the subgroup in $\pi_1(M)$ which is generated by \mathfrak{F} and t is isomorphic to $\mathfrak{F} \times \mathbb{Z}(t)$. If $D(M)$ denotes the double of M, then since M is boundary irreducible, $i_*: \pi_1(M) \to \pi_1(D(M))$ is a monomorphism, where $i: M \to D(M)$ is the inclusion (this is well known; a proof may be found, e.g., in [4]). Since $D(M)$ is P^2-irreducible and $\pi_1(D(M))$ not finite, $D(M)$ is aspherical (see the remark in the proof of Theorem 1). Therefore we can construct a map $f: F \times S^1 \to D(M)$ which induces the embedding $\mathfrak{F} \times \mathbb{Z} \to \pi_1(M) \to \pi_1(D(M))$. It follows from Waldhausen's theorem [5, Theorem 6.1] (see [2] for the nonorientable case), that f is homotopic to a covering map. In particular, since $F \times S^1$ is compact it follows that $\mathfrak{F} \times \mathbb{Z}$ has finite index in $\pi_1(D(M))$ and therefore in $\pi_1(M) \subset \pi_1(D(M))$. Now consider the covering \tilde{M} of M which is associated to $\mathfrak{F} \times \mathbb{Z}$. \tilde{M} is compact. Now the universal covering of M can be embedded in a ball such that the interior of this ball is contained in the embedding ([5, Theorem 8.1]; the proof in the non-orientable case is quite similar, since the only thing needed is the existence of a hierarchy [2]). Hence \tilde{M} does not contain fake 3-cells, and since $\pi_2(\tilde{M}) = 0$ it follows that \tilde{M} is irreducible. By the lemma, \tilde{M} is a fiber bundle with fiber F, in particular \tilde{M} is closed, which is absurd.

The first part of the proof gives us immediately:

Proposition. Let M be a closed P^2-irreducible 3-manifold and sup-
pose the center \mathfrak{Z} of $\pi_1(M)$ is infinite. If $\pi_1(M)$ contains a subgroup \mathfrak{Y} then $F \times S^1$ is a covering of M.

Corollary (to Theorem 2). The groups

$$
| t_i, \ldots, t_m, g_1, \ldots, g_n, a_1, b_1, \ldots, a_p, b_p, h:
$$

$$
l_i h t_i^{-1} = h; g_i h g_i^{-1} = h; a_i h a_i^{-1} = h; b_i h b_i^{-1} = h;
$$

$$
g_i^\alpha h^\beta = 1, (\alpha_i, \beta_i) = 1, t_1 \cdots t_m g_1 \cdots g_n \prod_{i=1}^{p} [a_i, b_i] = h^b, \ b \in \mathbb{Z}|
$$

do not contain a subgroup \mathfrak{Y}.

These are fundamental groups of Seifert fiber spaces. In particular the groups of torus knots $| g, h: g^a h^b = 1 |$ do not contain a subgroup \mathfrak{Y}. Hence the complement of a torus knot does not contain closed incompressible surfaces other than Tori.

Remark. The nonexistence of closed surfaces of genus >1 in irreducible orientable 3-manifolds M with nonempty boundary for which $\pi_1(M)$ has nontrivial center follows immediately from Waldhausen’s papers [6], [7]. In [6] Waldhausen proves that these manifolds are Seifert fiber spaces and in [7,§(10.3)] it is remarked that any incompressible surface in M which is not boundary-parallel either consists of Seifert fibers (but does not contain singular fibers) or is a branched covering over the Seifert surface (“Zerlegungsfläche”).

References

Rice University