A NEW PROOF OF THE TRANSPPOSITION THEOREM

LEOPOLD FLATTO

It is well known that the minimax theorem can be deduced from various forms of the transposition theorem (see e.g. [2] and [3]). In particular it follows from the following:

Transposition Theorem. Let A be a real m by n matrix and A' its transpose; let x and y denote respectively n- and m-dimensional real column vectors. Then either $Ax \geq 0$ for some $x \neq 0$, or $A'y \leq 0$ for some $y \geq 0$, $y \neq 0$ ($x = (x_1, \ldots, x_n) \geq 0$ means $x_i \geq 0$, $0 \leq i \leq n$).

It is shown in [3] that the above theorem follows readily from

Stiemke's Theorem [4]. If S is a subspace of R^n and S^+ the orthogonal complement of, then $S \cap S^+$ contains some vector $x \geq 0$, $x \neq 0$.

In this note we obtain a formula for the number of orthants intersected by a subspace of R^n. Stiemke's theorem and ipso the above mentioned transposition theorem will be obtained as a direct consequence of the formula. We employ the following terminology. The hyperplanes H_1, \ldots, H_s of R^n ($s \geq n$) are said to be in general position if the intersection of any n of them is 0. The k-dimensional subspace S of R^n is said to be in general position if the n subspaces $H_i \cap S$, where $H_i = \{x | x_i = 0\}$ ($1 \leq i \leq n$), are hyperplanes of S in general position. Letting $H_{i_1} \cap \cdots \cap H_{i_k} = 0$ or equivalently, $R^n = S \oplus H_{i_1} \oplus \cdots \oplus H_{i_k}$ for all choices of $1 \leq i_1 < i_2 < \cdots < i_k \leq n$. If the k vectors $s_i = (s_{i1}, \ldots, s_{in})$ ($1 \leq i \leq k$) form a basis for S, then it is easily checked that S is in general position if and only if all k by k minors of (s_{ij}) ($1 \leq i \leq k$, $1 \leq j \leq n$) are $\neq 0$. An orthant of R^n is defined to be the set $\{x | x_1 > 0, \ldots, x_n > 0\}$ where $\{e_i\}$ denotes any fixed choice of 1's. We now prove the following:

Theorem. Let S be a k-dimensional subspace of R^n which is in general position. The number of orthants intersected by S is

$$2 \sum_{i=0}^{k-1} \binom{n-1}{i}.$$
PROOF. For \(k = 1 \) and \(n = k \), the result is obvious so that we may assume \(2 \leq k \leq n \). Let \(0_{n,k} \) = number of orthants intersected by \(S \) (\(2 \leq k < n \)). Let \(R_{n,k} \) = number of regions into which \(n \) hyperplanes of \(R^k \) in general position decompose \(R^k \) (\(n \geq 1, k \geq 2 \)). The orthants of \(R^n \) intersected by \(S \) stand in 1-1 correspondence with the regions into which the hyperplanes \(H_i \cap S \) (\(1 \leq i \leq n \)) decompose \(S \). Identifying \(S \) with \(R^k \) we obtain \(0_{n,k} = R_{n,k} \) (\(2 \leq k < n \)). The formula for \(R_{n,k} \) is well known and can be found in [1]. We give another derivation of this formula.

Let \(L_1, \ldots, L_{n+1} \) be \(n+1 \) hyperplanes of \(R^k \) in general position decomposing \(R^k \) (\(k \geq 3 \)) into \(R_{n+1,k} \) \(k \)-dimensional regions. Let \(L_{n+1} \) intersect \(c \) of these. Each of the regions is divided by \(L_{n+1} \) into two regions so that \(R_{n+1,k} = R_{n,k} + c \). Let \(L_i' = L_i \cap L_{n+1} \) (\(1 \leq i \leq n \)). Then \(L_1', \ldots, L_n' \) are hyperplanes of \(L_{n+1} \) in general position decomposing \(L_{n+1} \) into \(R_{n,k-1} \) (\(k - 1 \))-dimensional regions. These regions are in 1-1 correspondence with the \(c \) \(k \)-dimensional ones intersected by \(L_{n+1} \). Thus:

\[
(1) \quad R_{n+1,k} = R_{n,k} + R_{n,k-1} \quad (k \geq 3, n \geq 1).
\]

Let \(R_k(z) = \sum_{n=1}^{\infty} R_{n,k} z^n \). Since \(R_1,k = 2 \) we conclude from (1) that

\[
(2) \quad R_k(z) = R_{k-1}(z)(z/(1 - z)) + 2z/(1 - z) \quad (k \geq 3).
\]

Since \(R_n,2 = 2n \) we have \(R_2(2) = 2z/(1 - z)^2 = 2[z/(1 - z) + z^2/(1 - z)^2] \). Repeated use of (2) yields

\[
(3) \quad R_k(z) = 2[z/(1 - z) + \cdots + z^k/(1 - z)^k],
\]

Equating the \(n \)th coefficients of both sides of (3), we obtain the desired formula

\[
R_{n,k} = 2 \sum_{i=0}^{k-1} \binom{n-1}{i}.
\]

We now obtain Stiemke's theorem as a consequence of the above formula. We may assume that \(S \) is in general position; the case where \(S \) is not in general position is then treated by a standard limiting argument.

Let \(1 \leq i_1 < \cdots < i_k \leq n \), \(1 \leq j_1 < \cdots < j_{n-k} \leq n \) denote \(n \) integers comprising all integers from 1 to \(n \). \(S \oplus H_{i_1} \cdots H_{i_k} = R^n \) as \(S \) is in general position. Hence \(0 = (S \oplus H_{i_1} \cdots H_{i_k}) \cap H_{j_1} \cdots H_{j_{n-k}} = S \cap H_{j_1} \cdots H_{j_{n-k}} \). Since \(S \cap H_{j_1} \cdots H_{j_{n-k}} = 0 \) for all choices of \(1 \leq j < \cdots < j_{n-k} \leq n \), we conclude that \(S \cap \) is in general position. Thus the number of orthants intersected by \(S \cap \) is \(2 \sum_{i=0}^{n-1-k} \binom{n-1}{i} \). If \(x, y \) are in the same orthant then \(x \cdot y > 0 \) so that the orthants intersected by \(S \) are distinct from those.
intersected by S^\perp. Since there are 2^n orthants and

$$2 \sum_{i=0}^{k} \binom{n-1}{i} + 2 \sum_{i=k}^{n-1} \binom{n-1}{i} = 2 \sum_{i=0}^{n-1} \binom{n-1}{i} = 2^n,$$

we conclude that every orthant is intersected by S or S^\perp. In particular this holds for the positive orthant, thus proving Stiemke's theorem.

References