JORDAN STRUCTURES IN SIMPLE GRADED RINGS

RICHARD SPEERS

1. Introduction. In a recent paper [3] we proved graded analogs to theorems of Herstein [1], [2] about the Lie structure of a simple ring. In this note results about the Jordan structure of a simple graded ring will be given. The main results are Theorem 1, which states that a homogeneous Jordan ideal that contains an even element also contains an irrelevant ideal, and Theorem 2, which states that a homogeneous Jordan ideal that is also a subring must contain an irrelevant ideal.

2. Preliminaries. In a graded ring \(R = \bigoplus_{i \in \mathbb{Z}} R_i \), ideals of the form \(\bigoplus_{i \in \mathbb{Z}} R_i \) are irrelevant. \(R \) is a simple graded ring (sgr) if \(R_i R_j \neq (0) \) for all \(i \) and \(j \), and \(R \) has no relevant homogeneous ideals. If \(x \in R \) and \(y \in R \), then \([x, y] = xy - (-1)^{a \beta}yx\) is called their Lie product (Jordan product). The center of \(R \) is \(Z(R) = \{x : [x, y] = 0 \text{ for all } y \in R\} \).

Proposition 1. Let \(R = \bigoplus_{i \in \mathbb{Z}} R_i \) be a sgr. If \(\alpha \neq a \in R \), then \(R_i a R_k = R_{i+j+k} \) for all \(i \) and \(k \). If \(b \) is homogeneous and \(R_i b R_0 = (0) \), then \(b = 0 \).

A proof may be found in [3].

3. Lemma. Let \(R \) be a graded ring and let \(U \) be a homogeneous Jordan ideal of \(R \). If \(a, b \in U \) are homogeneous, then for all homogeneous \(x \in R \) we have \([a, b], x \] \(U \).

Proof. \((a, [x, b]) - ([a, x], b) = (-1)^{a \beta}[x, (a, b)]\). The left side of the equation is an element of \(U \), so the result follows.

Theorem 1. Let \(R = \bigoplus_{i \in \mathbb{Z}} R_i \) be a sgr of characteristic \(\neq 2 \) and let \(U \) be a homogeneous Jordan ideal of \(R \). If \(U \) contains a nonzero even element of \(R \), then \(U \) contains a nonzero irrelevant ideal of \(R \).

Proof. Let \(a, b \in U \) be homogeneous. Then \([a, b], x \] \(U \) and \((a, b), x \] \(U \) imply \(2x(a, b) \in U \) which in turn implies that \(2x(a, b), y \) \(U \) for all homogeneous \(y \). Thus, \(2R_i(a, b)R_j \subseteq U \) for all \(i \) and \(j \).

If \(2R_i(a, b)R_j = (0) \) for all \(i \) and \(j \), then by Proposition 1 \((a, b) = 0 \), and so in this case \((U, U) = (0) \). If \(0 \neq a \in U \) is even, \(0 = (a, (a, x)) \) implies \(2axa = 0 \) for all homogeneous \(x \). Thus, \(a = 0 \), a contradiction.

Hence, there exist \(i \) and \(j \) such that \(0 \neq 2R_i(a, b)R_j \subseteq U \). Therefore, \(U \supseteq \bigoplus_{k \geq a+b+i+j} R_k \neq (0) \).

Received by the editors April 30, 1969.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proposition 2. Let \(R \) be a sgr, \(\text{char } R \neq 2 \), and let \(U \) be a homogeneous Jordan ideal of \(R \) that does not contain a nonzero irrelevant ideal of \(R \). If \(a \in U \) satisfies \([a, R] \subseteq U \), then \(a = 0 \).

Proof. Let \(x \) and \(y \) be homogeneous. If \(a \neq 0 \), then \([a, x] \in U \) and \((a, x) \in U \) imply \(ax \in U \), so \((ax, y) \in U \). Thus, \(yax \in U \), so \(U \supseteq \oplus_{i \in a} R_i \).

Corollary. With \(R \) and \(U \) as above, \(U \cap Z(R) = (0) \).

Theorem 2. Let \(R \) be a sgr, \(\text{char } R \neq 2 \), and let \(U \) be a homogeneous Jordan ideal and a subring of \(R \). Either \(U = (0) \) or \(U \) contains a nonzero irrelevant ideal of \(R \).

Proof. If \((U, U) = (0) \), \(a = 0 \) for all even \(a \in U \). If \(0 \neq a \in U \) is odd, \(a^2 = 0 \) and so \(a(a, x) = 0 \) for all even \(x \in R \). Hence, \(axa = 0 \), so \(a = 0 \). Thus, \((U, U) = (0) \) implies that \(U = (0) \).

If \((U, U) \neq (0) \) let \(a \) and \(b \in U \), \((a, b) \neq 0 \), and let \(c \) be homogeneous. Then \((ab, c) = (a, b)c + (-1)^{ab}(a, c) + (-1)^{a(b+c)}(b, ca) \). Thus, \((a, b)R_i \subseteq U \) for all \(i \). Let \(d \) be homogeneous. Then \((d, (a, b)c) = d(a, b)c + (-1)^{d(a+b+c)}(a, b)cd \subseteq U \). Now,

\[
(a, bcd) = abcd + (-1)^{e(b+c+d)}bcd \in U.
\]

An examination of the parities involved shows that \((a, bcd) = (a, b)cd \pm (ba, cd) \pm (cd, b)a \). Thus \((a, b)cd \subseteq U \), and so \(d(a, b)cd \subseteq U \). This implies that \(U \supseteq \oplus_{i \in a+b} R_i \).

References

Skidmore College