Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Torsion theories and semihereditary rings


Author: Darrell R. Turnidge
Journal: Proc. Amer. Math. Soc. 24 (1970), 137-143
MSC: Primary 16.40
DOI: https://doi.org/10.1090/S0002-9939-1970-0255601-1
MathSciNet review: 0255601
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, N. J., 1956. MR 17, 1040. MR 0077480 (17:1040e)
  • [2] S. U. Chase, Direct products of modules, Trans. Amer. Math. Soc. 97 (1960), 457-473. MR 22 #11017. MR 0120260 (22:11017)
  • [3] R. R. Colby and E. A. Rutter Jr., Generalizations of $ {\text{QF}}$-$ 3$ rings (to appear).
  • [4] S. E. Dickson, A torsion theory for Abelian categories, Trans. Amer. Math. Soc. 121 (1966), 223-235. MR 33 #162. MR 0191935 (33:162)
  • [5] S. Endo, On semi-hereditary rings, J. Math. Soc. Japan 13 (1961), 109-119. MR 25 #2107. MR 0138664 (25:2107)
  • [6] P. Gabriel, Des catégories abéliennes, Bull. Soc. Math. France, 90 (1962), 323-448. MR 0232821 (38:1144)
  • [7] J. P. Jans, Some aspects of torsion, Pacific J. Math. 15 (1965), 1249-1259. MR 33 #163. MR 0191936 (33:163)
  • [8] I. Kaplansky, A characterization of Prüfer rings, J. Indian Math. Soc. 24 (1960), 279-281. MR 23 #A2443. MR 0125137 (23:A2443)
  • [9] L. Levy, Torsion-free and divisible modules over non-integral-domains, Canad. J. Math. 15 (1963), 132-151. MR 26 #155. MR 0142586 (26:155)
  • [10] F. L. Sandomierski, Semisimple maximal quotient rings, Trans. Amer. Math. Soc. 128 (1967), 112-120. MR 35 #5473. MR 0214624 (35:5473)
  • [11] -, Nonsingular rings, Proc. Amer. Math. Soc. 19 (1968), 225-230. MR 36 #2648. MR 0219568 (36:2648)
  • [12] D. R. Turnidge, Torsion theories and rings of quotients of Morita equivalent rings (to appear). MR 0309985 (46:9088)
  • [13] E. A. Walker and C. Walker, Quotient categories and rings of quotients (to appear).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16.40

Retrieve articles in all journals with MSC: 16.40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1970-0255601-1
Article copyright: © Copyright 1970 American Mathematical Society

American Mathematical Society