FATOU'S LEMMA IN SEVERAL DIMENSIONS

DAVID SCHMEIDLER

ABSTRACT. In this note the following generalization of Fatou's lemma is proved:

Lemma. Let \((f_n)_{n=1}^{\infty} \) be a sequence of integrable functions on a measure space \(S \) with values in \(\mathbb{R}^d \), the nonnegative orthant of a \(d \)-dimensional Euclidean space, for which \(\int f_n \to a \in R^d_+ \). Then there exists an integrable function \(f \) from \(S \) to \(\mathbb{R}^d_+ \), such that a.e. \(f(s) \) is a limit point of \((f_n(s))_{n=1}^{\infty} \) and \(\int f \leq a \).

1. Introduction. When \(d = 1 \), the result is a form of Fatou's lemma. The assertion above is applied in mathematical economics [4]. It is also strongly connected with the theory of set valued functions [2] or correspondences [3]. The nontrivial part of the arguments is limited to the case where \(S \) is an atomless measure space. In the purely atomic case the lemma is reduced to a simple exercise in series. In any case, the lemma cannot be proved by a successive application of Fatou's lemma \(d \) times.

A few corollaries of the lemma are proved in §3.

2. Preliminary results and the proof of the lemma. Let \((A_n)_{n=1}^{\infty} \) be a sequence of (nonempty) subsets of \(\mathbb{R}^d \). We denote by \(\text{Lim Sup}_{n=1}^{\infty} A_n \) the set of all the limit points of the sequences \((a_n)_{n=1}^{\infty} \) with \(a_n \in A_n \), \(n = 1, 2, \cdots \). Denote by \(x \cdot y \) the inner product, \(\sum_{i=1}^{d} x_i y_i \), in \(\mathbb{R}^d \).

Proposition 1. For each \(p > 0 \) there is an integrable function \(g \) such that \(p \cdot f \leq p \cdot a \) and a.e. \(g(s) \in \text{Lim Sup}_{n=1}^{\infty} \{ f_n(s) \} \) and \(p \cdot g(s) = \lim \inf f_n \cdot f_n(s) \).

Proof. Define \(h(s) = \lim \inf f_n \cdot f_n(s) \). As \(f_n(s) \to f(a) \), by Fatou's lemma \(f h \leq p \cdot a \). Now we decompose \(h \) to \(d \) integrable components \(g^1, \cdots, g^d \) such that a.e. \(p \cdot g(s) = h(s) \).

Define:

\[
g_n(s) = \inf \{ f_k(s) \mid k \geq n \ \text{and} \ p \cdot f_k(s) < h(s) + 1/n \}.
\]

For each \(r \in \mathbb{R}^d_+ \) and \(n = 1, 2, \cdots \) one has

Received by the editors February 28, 1969 and, in revised form, June 26, 1969.

AMS Subject Classifications. Primary 28.50; Secondary 70.10.

Key Words. Fatou lemma, vector valued integrals.

1 This research has been sponsored in part by the Office of Naval Research F 61052 67C 0094.

2 The author is thankful to Werner Hildenbrand for suggesting the problem. Thanks are also due to Bezalel Peleg and Micha Perles for some very helpful remarks.

300

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
\{s \mid g_n^i(s) < r\} = \bigcup_{k \geq n} \{s \mid f_k^i(s) < r\} \cap \{s \mid p \cdot f_k(s) < h(s) + 1/n\}.

Hence \((g_n^i)\) is a monotone sequence of measurable functions, each bounded by the integrable function \((1/p^i)(h+1)\). Define \(g^i(s) = \lim_n g_n^i(s)\) then \(g^i\) is an integrable function and a.e. \(p^i g^i(s) \leq h(s)\) and \(g^i(s) \in \text{Lim Sup}_n \{f_n^i(s)\}\).

Proceed by induction:

\[
\begin{align*}
g_n^i(s) &= \inf \left\{ f_k^i(s) \mid k \geq n \text{ and } p \cdot f_k(s) < h(s) + 1/n \right\} \\
\text{and } f_k^i(s) &< g^j(s) + 1/n, j = 1, \ldots, i - 1.
\end{align*}
\]

It is easy to check that \(g_n^i(s)\) is well defined and \(g^i(s) = \lim_n g_n^i(s)\) is an integrable function with \(\sum_{j=1}^i p^j g^j(s) \leq h(s)\) and \((g^i(s), \ldots, g^i(s)) \in \text{Lim Sup}_n \{f_n^i(s)\}\) a.e. After \(d\) steps we have \(g(s) = (g^1(s), \ldots, g^d(s))\) such that a.e. \(p \cdot g(s) = h(s)\) and \(g(s) \in \text{Lim Sup}_n \{f_n(s)\}\). Q.E.D.

Denote: \(Q_y = \{x \in R^d_+ \mid x^y\}, y \in R^d_+.\)

Proposition 2. Let \(A\) be a closed, convex subset of \(R^d_+\) and \(y \in R^d_+\) such that \(AC\cap Q_y = \emptyset\). Then there is \(q > 0\) with

\[
\sup \{q \cdot x \mid x \in Q_y\} < \inf \{q \cdot x \mid x \in A\}.
\]

Proof. By the separation theorem there are \(p\) and \(\alpha\) such that \(p \cdot x < \alpha < p \cdot z\) for all \(x \in Q_y\) and all \(z \in A\). Let \(p'\) be the vector obtained from \(p\) by substitution of zero for each negative coordinate of \(p\). For \(x \in A, x \geq 0\) so \(p' \cdot x \geq p \cdot x > \alpha\). For \(x \in Q_y\) let \(x'\) denote the vector obtained from \(x\) by substitution of zero for those coordinates which we changed previously in \(p\). Of course, \(x' \in Q_y\), so \(p' \cdot x = p \cdot x' < \alpha\). Denote by \(p_\delta\) the vector obtained from \(p'\) by substitution of \(\delta > 0\) for each zero in \(p'\). Again for each \(x \in A\), \(p_\delta \cdot x \geq p' \cdot x > \alpha\). For \(x \in Q_y\) one has \(p_\delta \cdot x \leq p' \cdot x + \delta \alpha < \alpha + \delta \alpha\). Because of the compactness of \(Q_y\) there is a \(\delta' > 0\) such that \(q = p_{\delta'}\) fulfills the requirements of the proposition. Q.E.D.

For each \(s\) in \(S\) let \(F(s)\) be a nonempty subset of \(R^d\).

Following [2] we define:

\[
\int F = \left\{ \int h \mid h \text{ is integrable and a.e. } h(s) \in F(s) \right\}
\]

Proposition 3. Let \(A = \int \text{Lim Sup}_n \{f_n(s)\}\) and \(q > 0\) such that for each \(x \in A\), \(q \cdot x \geq q \cdot a\). Then there is a subsequence \((f_{n_k})\) of \((f_n)\) such that for each \(x \in \int \text{Lim Sup}_k \{f_{n_k}(s)\}, q \cdot x = q \cdot a\).
PROOF. Denote \(h_n(s) = \inf \{ q \cdot f_k(s) \mid k \geq n \} \) and \(h(s) = \lim_n h_n(s) \) \(= \lim \inf_n q \cdot f_n(s) \). Using Proposition 1 for \(p = q \) one has: \(\int h = q \cdot \int g \leq q \cdot a \) and \(\int g \in A \). By the condition of the proposition \(q \cdot \int g \geq q \cdot a \), so \(\int h = q \cdot a \). For each \(s \in S \), \(h_n(s) \leq q \cdot f_n(s) \) so \(\int q \cdot f_n - h_n = \int (q \cdot f_n - h_n) = \int q \cdot f_n - \int h_n - q \cdot a - \int h = 0 \). Also as \(\int h - h_n \to 0 \), we get \(\int q \cdot f_n - h_n \to 0 \). Convergence in the mean implies the convergence of a subsequence a.e. Hence there is a subsequence \((f_{n_k}) \) such that a.e. \(q \cdot f_{n_k}(s) \to h(s) \). Consequently for a.e. \(s \in S \) and each \(x \in \text{Lim Sup}_k \{ f_{n_k}(s) \} \), \(q \cdot x = h(s) \). Integrating over \(S \) completes the proof. Q.E.D.

PROPOSITION 4. Let \(S \) be atomless and for each \(s \in S \) let \(F(s) \) be a non-empty subset of \(R^d \). Then \(\int F \) is convex.

PROOF. This is an elementary theorem about integrals of correspondences due to Richter, [5]. (The proof appears also in [3], p. 369.) This theorem is a simple consequence of Lyapunov convexity theorem and will not be reproved here.

PROPOSITION 5. Let \(a_{k,n} \in R^d_+ \) for \(k, n = 1, 2, \ldots \) and assume that \(\sum_{k=1}^\infty a_{k,n} \to a \) (where \(n \to \infty \)). Then there is a sequence \((b_k)_{k=1}^\infty \) such that \(\sum_{k=1}^\infty b_k \leq a \) and for each \(k, b_k \in \text{Lim Sup}_n \{ a_{n,k} \} \). Moreover, if there is in addition, a sequence \((c_k)_{k=1}^\infty \) such that for each \(n \) and \(k, a_{n,k} \leq c_k \) and \(\sum_{k=1}^\infty c_k = c \in R^d_+ \), then \(\sum_{k=1}^\infty b_k = a \).

REMARK. The first part of this proposition is exactly the statement of the lemma in case of a purely atomic measure space; the second part is related to Corollary 1 in §3.

PROOF. Reasoning by compactness, the sequence of sequences \((a_{k,n})_{k=1}^\infty \) has a pointwise converging subsequence \((a_{k,n})_{k=1}^\infty \), the limit of which we denote by \((b_k)_{k=1}^\infty \). Thus, for each \(k, b_k = \lim_k a_{k,n} \), i.e. \(b_k \in \text{Lim Sup}_n \{ a_{n,k} \} \). We have to prove that \(\sum_{k=1}^\infty b_k \leq a \). Assume the contrary, i.e. there is a coordinate \(i \), an integer \(N \) and a number \(\epsilon > 0 \) such that \(\sum_{k=1}^N b_k \geq a^i + \epsilon \). For each \(k \) let \(M_k \) be such that \(n_j > M_k \) imply \(b_k < a_{k,n_j}^i + \epsilon / 2N \), and let \(M_0 \) be such that \(n > M_0 \) imply \(a_{k,n}^i < a^i + \epsilon / 4 \). Define \(M = \max \{ M_0, M_1, \ldots, M_N \} \). Then for \(n_m > M \) one has: \(\sum_{k=1}^{\infty} a_{k,n_m}^i \geq \sum_{k=1}^N a_{k,n_m}^i > \sum_{k=1}^N b_k^i - \epsilon / 2 \geq a^i + \epsilon / 2 \), a contradiction.

Now assume the additional condition and apply the first part of the proposition to the sequence \((c_k = a_{k,n_j})_{k=1}^\infty \). Q.E.D.

A point \(x \) in a set \(B \) in \(R^d \) is called admissible if \(x \geq y \in B \) imply \(x = y \). If for \(x \in B \) there exists a vector \(p > 0 \) such that for each \(y \in B \), \(p \cdot x \leq p \cdot y \) then \(x \) is called strictly admissible. Of course, a strictly admissible point of a set is also admissible.
Proposition 6. The admissible points of a closed convex set in \mathbb{R}^d belong to the closure of the strictly admissible points of this set.

Proof. This is a theorem of Arrow-Barankin-Blackwell, \cite{1}. (I thank G. Debreu for this reference.)

Proposition 7. Let S be atomless and set $A = \operatorname{fLim Sup} \{f_n(s)\}$. Then A is convex and $A \cap Q_a \neq \emptyset$.

Proof. The convexity of A is implied by Proposition 4. A is nonempty by Proposition 1. Assume that $A \cap Q_a = \emptyset$. By Proposition 2 there is a vector $q > 0$ with

$$\inf\{q \cdot x | x \in A\} > q \cdot a \quad (q \cdot a = \sup\{q \cdot x | x \in Q_a\}).$$

The last inequality contradicts Proposition 1. Q.E.D.

Proof of the lemma. We decompose S to an atomless part and a purely atomic part. The lemma can be proved separately for each part. Proposition 5, as remarked above, proves the lemma for the purely atomic case. (One can assume, without a loss of generality, that in S there are at most \aleph_0 atoms.)

Now assume that S is atomless. We prove the lemma reasoning by induction on $\dim (A)$. (A denotes the $\operatorname{fLim Sup} \{f_n(s)\}$ and $\dim (A)$ is the linear dimension of the smallest flat containing A.) By Proposition 7, $\dim (A) \geq 0$ and if $\dim (A) = 0$ then the lemma holds. Given $0 < l \leq d$ assume that the lemma holds when $\dim (A) < l$ and we shall prove it for the case $\dim (A) = l$. The induction hypothesis states that for each sequence of integrable functions $g_n : S \to \mathbb{R}^d$ with $\int g_n \to b$ and $\dim (\operatorname{fLim Sup} \{g_n(s)\}) < l$ one has

$$\int \operatorname{Lim Sup} \{g_n(s)\} \cap Q_b \neq \emptyset.$$

In view of Proposition 7 it is sufficient to prove that the admissible points of A belong to A.

Claim 1. The strictly admissible points of A belong to A.

Let $b \in A$ and $q > 0$ such that $q \cdot b \geq q \cdot x$ for each $x \in A$. If $b \in \text{rel-int } A$ then $b \in A$ because of the convexity of A. In the other case the origin is a boundary point of $A - \{b\}$ in the subspace $H - \{b\}$ of \mathbb{R}^d, where H is the smallest flat containing A. Then there is $q' \neq 0$ in $H - \{b\}$ for which $q' \cdot x \geq 0$ for each $x \in A - \{b\}$ and for at least one point of $A - \{b\}$, say x_0, $q' \cdot x_0 > 0$. Hence there is $\epsilon > 0$ such that defining $\rho = q' + (1 - \epsilon)q$ we have: $\rho > 0$, $\forall x \in A$, $\rho \cdot x \geq \rho \cdot b$ and a strict inequality for at least one point of A. So

$$\dim (A \cap \{x | \rho \cdot x = \rho \cdot b\}) < l.$$

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Let $y_n \to b$ with $y_n \in A$ for $n = 1, 2, \cdots$. Hence there is a sequence of integrable functions (g_n) such that for each n, $\int g_n = y_n$ and a.e. $g_n(s) \in \operatorname{Lim Sup}_k \{f_k(s)\}$. Define $B = \int \operatorname{Lim Sup}_n \{g_n(s)\}$, then $B \subset A$ because a.e. $\operatorname{Lim Sup}_n \{g_n(s)\} \subset \operatorname{Lim Sup}_n \{f_n(s)\}$. In consequence $p \cdot x \geq p \cdot b$ for each $x \in B$ and $\dim (B \cap \{x \mid p \cdot x = p \cdot b\}) < l$. Now the conditions of Proposition 3 are fulfilled for (g_n), B, b and p, hence there is a subsequence $(g_{n_k})_{k=1}^{\infty}$ such that
\[\int \operatorname{Lim Sup}_k \{g_{n_k}(s)\} \subset B \cap \{x \mid p \cdot x = p \cdot b\}. \]

The induction hypothesis completes the proof of the claim.

Claim 2. The admissible points of \overline{A} belong to A.

Denote by b an admissible point of \overline{A}. Because of Proposition 6 and Claim 1 there is a sequence (y_n) of strictly admissible points in A such that $y_n \to b$. Set (g_n), B and H as in the proof of Claim 1. For each n there is a vector q_n with $q_n \cdot q_n = 1$ and $q_n \cdot x \geq q_n \cdot y_n$ for each $x \in A$. We may assume, in addition that for each n, $q_n \in H - \{y_n\}$. (Note that $H - \{y_n\} = H - \{b\}$ for each n.) Otherwise, we have for some n, that 0 is an interior point of $A - \{y_n\}$ in $H - \{y_n\}$, or equivalently: $y_n \in \operatorname{rel-int} A$. But then, because y_n is a strictly admissible point of \overline{A}, it implies that each point of \overline{A} is strictly admissible and in this case Claim 2 is a consequence of Claim 1. Thus (q_n) has a limit point q in $H - \{b\}$. Assume, without loss of generality, that $q_n \to q$. For each $x \in A - \{b\}$, $q \cdot x \geq 0$ and $\dim (\{x \in H - \{b\} \mid q \cdot x = 0\}) < l$. Hence, in order to complete the proof of the claim by the induction hypothesis, it is sufficient to show that for each $x \in B$, $q \cdot x = q \cdot b$.

Assume, per absurdum, that there is $x_0 \in B$ with $q \cdot x_0 > q \cdot b$. Because $b \in \overline{A}$ there is $z \in B$ with $q \cdot x_0 > q \cdot z$. Let h and g be two integrable functions such that: $x_0 = \int g$, $z = \int h$ and a.e. $g(s) \in \operatorname{Lim Sup}_n \{g_n(s)\}$ and $h(s) \in \operatorname{Lim Sup}_n \{f_n(s)\}$. As a consequence of the last inequality there is a nonnull set U defined:
\[U = \{s \in S \mid q \cdot h(s) < q \cdot g(s)\}. \]

Consequently, for each $s \in U$ there are $N(s)$ and $\epsilon(s) > 0$ such that for each $n > N(s)$, $q_n \cdot h(s) < q_n \cdot g(s) + \epsilon(s)$. Because $g(s) \in \operatorname{Lim Sup}_n \{g_n(s)\}$ there is $n(s) > N(s)$, $s \in U$, such that $q_n(s) \cdot h(s) < q_n(s) \cdot g_n(s)$. Since $U = \bigcup_{s=1}^{\infty} \{s \in U \mid n(s) = k\}$, there are k and a nonnull subset, V, of U such that for each $s \in V$, $q_k \cdot h(s) < q_k \cdot g_k(s)$. Define a function \tilde{g} by: $\tilde{g}(s) = h(s)$ for $s \in V$ and $\tilde{g}(s) = g_k(s)$ for $s \notin V$. Then a.e. $\tilde{g}(s) \in \operatorname{Lim Sup}_n \{f_n(s)\}$ and $q_k \cdot \int \tilde{g} < q_k \cdot \int g_k = q_k \cdot y_k$—a contradiction. Q.E.D.
3. **Corollaries.** The first two corollaries were proved by Aumann [2], (with some restrictions on S). Our proof, based on the lemma, is shorter and simpler than his direct proof. These corollaries have direct application in mathematical economy [4], [6]. As to Corollary 4, it is natural to assume that it has a direct elementary proof but not as short as the one below.

Corollary 1. Let (f_n) be a sequence of integrable functions from S to \mathbb{R}^d such that $\int f_n \to a$ and there is an integrable function g with $|f_n(s)| \leq |g(s)|$ for a.e. $s \in S$ and $n = 1, 2, \ldots$. Then there is an integrable function f such that $\int f = a$ and a.e. $f(s)$ is a limit point of $(f_n(s))$.

Proof. As in the proof of the lemma, we can deal separately with each of the two cases: S is atomless, S is purely atomic. In the second case, Proposition 5 proves the corollary. We assume, for the rest of the proof, that S is atomless.

Let $d_i; i = 1, \ldots, 2^d$ be the vectors in \mathbb{R}^d with coordinates 1 or -1. Define d_iVx to be the vector in \mathbb{R}^d the jth coordinate of which is $d_{i}(x)^j$ and define $e = (1, \ldots, 1)$. Then for each n and a.e. s, $d_i\nabla f_n(s) \leq e|g(s)|$, $i = 1, \ldots, 2^d$. Now apply the lemma to $(e|g| + d_i\nabla f_n)_{n=1}^\infty$. For each i we get an integrable function f_i, such that $d_iVf_i \leq d_iVg$ and a.e. $h_i(s) \in \text{Lim Sup}_n \{f_n(s)\}$. So, using Proposition 4, we get: $a \in \text{Lim Sup}_n \{f_n(s)\}$. Q.E.D.

Corollary 2. For each s let $(F_n(s))$ be a sequence of nonempty subsets of \mathbb{R}^d with the property: $x \in F_n(s)$ imply $|x| \leq g(s)$, for some integrable function g. Then

$$
\text{Lim Sup}_n \int F_n \subset \int \text{Lim Sup}_n F_n(s).
$$

Proof. Assume that $x \in \text{Lim Sup}_n \int F_n$. Then x is a limit point of a sequence (x_n) with $x_n \in \int F_n$. To simplicate notation assume that $x_n \to x$. $x_n \in \int F_n$ means that $x_n = \int f_n$ for an integrable function f_n with $f_n(s) \in F_n(s)$ a.e. By Corollary 1 there is an integrable function f with $\int f = x$ and a.e. $f(s) \in \text{Lim Sup}_n \{f_n(s)\}$. Hence we completed the proof since a.e. $\text{Lim Sup}_n \{f_n(s)\} \subset \text{Lim Sup}_n F_n(s)$. Q.E.D.

Corollary 3. Let F be a closed-valued correspondence from S to \mathbb{R}^d_+ i.e. $F(s)$ is a nonempty, closed subset of \mathbb{R}^d_+, for each $s \in S$. Then $\int F$ contains all the admissible points of its closure.

Proof. Let x be an admissible point of $\int F$. Then there is a sequence $x_n \to x$ with $x_n \in \int F$ for each n. It means that there is a sequence (f_n) of integrable functions with $f_n(s) \in F(s)$ a.e. for $n = 1, 2, \ldots$. By the
lemma there is an integrable function f with $\int f \leq x$ and a.e. $f(s) \in \text{Lim Sup}_n \{f_n(s)\} \subset F(s)$, where the inclusion is implied by the condition that $F(s)$ is closed for each s. Hence $\int f \in \int F$ and because x is an admissible point, we get $\int f = x \in \int F$. Q.E.D.

Corollary 4. Let A be a closed set in \mathbb{R}^d. Then $\text{conv} (A)$ contains all the admissible points of its closure.

Proof. Let S be an atomless probability measure space. (The word “Probability” means that the measure of S is 1.) Define $F(s) = A$ for each $s \in S$. Then, by Corollary 3, the following claim completes the proof.

Claim 3. Let S be an atomless probability measure space and A in \mathbb{R}^d. Then $\text{conv} (A) = \int F$, where $F(s) = A$ for each $s \in S$.

By Proposition 4, $\text{conv} (A) \subset \int F$. The other inclusion can be easily proved by induction of the dimension and is left to the reader. Q.E.D.

References

Hebrew University of Jerusalem