IRREGULAR INVARIANT MEASURES RELATED TO HAAR MEASURE

H. LEROY PETERSON

Abstract. Let G be a locally compact nondiscrete group, and let ν_1 be a Haar measure on an open subgroup of G. It is not hard to show that ν_1 must be the restriction of a Haar measure ν on all of G. Here we show that there exists a translation invariant measure μ (found by extending ν_1 to the cosets of H in a natural way) which agrees with ν on, for example, (ν) σ-finite sets, open sets, and subsets of H. Although ν can be computed from μ in a relatively simple manner, the two measures are not equal in general. In fact, there is an extreme case, namely when H is not σ-compact and has uncountably many cosets, in which μ fails very badly to be regular—there are closed sets on which μ is not inner regular and (other) closed sets on which μ is not outer regular. One condition sufficient for this extreme case to be possible is when G is Abelian and not σ-compact.

1. Definitions and notation. Let μ be a (nonnegative, countably additive) measure defined on a σ-algebra \mathcal{M} of subsets of a topological space X. If S is in \mathcal{M}, we say that μ is inner regular on S if

$$\mu S = \sup \{ \mu C : C \subseteq M, C \text{ compact}, C \subseteq S \}.$$

We say that μ is outer regular on S if

$$\mu S = \inf \{ \mu U : U \subseteq M, U \text{ open}, U \supseteq S \}.$$

Following [2, 11.34], we say that μ is regular if it is outer regular on every set in \mathcal{M} and inner regular on every open set in \mathcal{M}, and if every compact set in \mathcal{M} has finite measure.

By Haar measure on a locally compact group G, we mean a left Haar measure as defined in, e.g., [2]; that is to say, a left-translation invariant, regular, nondegenerate measure on a σ-algebra $\mathcal{M}(G)$ of subsets of G. $\mathcal{M}(G)$ contains all the closed subsets of G and consists of all the sets which are measurable with respect to the Carathéodory outer measure associated with the measure.

If H is a subgroup of G (not necessarily normal), G/H denotes the space of left cosets of H in G. If S is a set, $\mathcal{P}(S)$ denotes the collection of all subsets of S; $|S|$ denotes the cardinality of S.
2. **Lemma 1.** Let X be a Hausdorff space, (X, M, μ) a measure space, with $\mu C < \infty$ for all compact $C \in M$ and μ inner regular on $S \in M$ whenever $\mu S < \infty$. Let

$$\lambda S = \sup \{ \mu C : C \text{ compact}, C \subseteq S \},$$

$$\nu S = \inf \{ \mu U : U \text{ open}, U \in M, U \supseteq S \},$$

for all $S \in M$. Then

1. $\lambda S = \mu S = \nu S$ whenever $\nu S < \infty$,
2. λ and ν are measures.

Proof.

(1) Suppose $\nu S < \infty$. Let V be a G_δ set such that $S \subseteq V$ and $\nu S = \mu V$. If C is a compact member of M with $C \subseteq V - S$, then $S \subseteq V - C \subseteq V$. Now $V - C$ is a G_δ set so $\mu (V - C) = \nu S = \mu V$, thus $\mu C = 0$. Hence $\mu (V - S) = 0$, and $\mu S = \mu V = \nu S$; $\lambda S = \mu S$ is obvious since $\mu S < \infty$.

(2) Suppose $\{ S_j : j = 1, 2, \ldots \} \subseteq M$ and $S_j \cap S_k = \emptyset$ ($j \neq k$). Let $S = \bigcup S_j$, let C be a σ-compact subset of S such that $\lambda S = \mu C$ and (for each j) let C_j be a σ-compact subset of S_j with $\mu C_j = \lambda S_j$. Then

$$\lambda S = \mu C = \mu (\bigcup C \cap S_j) = \sum \mu (C \cap S_j) \leq \sum \lambda S_j$$

and

$$\lambda S \geq \mu (\bigcup C_j) = \sum \mu C_j = \sum \lambda S_j,$$

hence λ is a measure. Clearly (by (1)),

$$\nu S = \mu S = \sum \mu S_j = \sum \nu S_j$$

if $\nu S < \infty$. If $\nu S = \infty$, take U_j a G_δ set such that $U_j \supseteq S_j$ and $\nu S_j = \mu U_j$ ($j = 1, 2, \ldots$). Then

$$\sum \nu S_j = \sum \mu U_j \geq \mu (\bigcup U_j) \geq \nu S = \infty,$$

thus ν is a measure.

Lemma 2. Let G be a locally compact group, H an open subgroup of G. Then $M(H) = M(G) \cap P(H)$.

Proof. Let ν be a Haar measure on G and ν_1 a Haar measure on H. Both ν and ν_1 are unique to within a multiplicative constant; further, if U is an open subset of H with compact closure, then $0 < \nu U < \infty$ and $0 < \nu_1 U < \infty$. Thus we may assume that $\nu U = \nu_1 U$; but then the Carathéodory outer measures associated with ν and ν_1, respectively, are equal on $P(H)$. It follows that the ν-measurable and ν_1-measurable subsets of H coincide, which is to say that $M(H) = M(G) \cap P(H)$.
Note. The proof of Lemma 2 contains the information that there is a one-to-one correspondence between the Haar measures on G and H, respectively, given by $\nu \leftrightarrow \nu_1 = \nu|M(H)$. One by-product of Theorem 1 will be a method of computing ν, given ν_1.

Theorem 1. Let G be a nondiscrete locally compact group, let H be an open subgroup of G, and ν_1 a left Haar measure on H. For $S \in M(G)$, define

$$
\mu S = \sum \{ \nu_1(xS \cap H) : xH \in G/H \},
$$

$$
\nu S = \inf \{ \mu U : U \text{ open}, U \supset S \}.
$$

Then

1. μ is a well-defined left-invariant measure on $M(G)$.
2. ν is a Haar measure for G.
3. μ and ν are both extensions of ν_1 and μ and ν agree on open sets and (ν) σ-finite sets.
4. If H is not σ-compact, μ fails to be inner regular on some closed subsets of G.
5. If G/H is uncountable, μ fails to be outer regular on some closed subsets of G.

Proof. (1) We know that if $S \in M(G)$, then $xS \in M(G)$ and therefore $xS \cap H \in M(G) \cap P(H) = M(H)$ for all $x \in G$. Further, if $xH = yH$, then

$$
\nu_1(xS \cap H) = \nu_1(yx^{-1}xS \cap H) = \nu_1(yS \cap H),
$$

since ν_1 is left invariant. Thus μ is well defined; it is clearly left-invariant. To show that μ is a measure, suppose $\{ S_j \} \subset M(G)$, $S_j \cap S_k = \emptyset$ ($j \neq k$); then

$$
\mu(\bigcup S_j) = \sum \nu_1(\bigcup xS_j \cap H) = \sum \left(\sum_{j=1}^{\infty} \nu_1(xS_j \cap H) \right)
$$

$$
= \sum_{j=1}^{\infty} \left(\sum_{j} \nu_1(xS_j \cap H) \right) = \sum_{j=1}^{\infty} \mu S_j
$$

(by standard arguments; either both double summations have uncountably many nonzero terms or the l_1 version of Fubini's theorem applies).

(2) Let $S \in M(G)$, with S open or $\mu S < \infty$. There is a countable set $\{ x_j \}$ such that $\mu S = \sum_{j=1}^{\infty} \nu_1(x_j S \cap H)$. For each j, there is a σ-compact set C_j such that $C_j \subset x_j S \cap H$ and $\nu_1 C_j = \nu_1(x_j S \cap H)$. Thus

$$
\mu S = \sum \nu_1 C_j = \sum \mu(x_j^{-1} C_j) = \mu(\bigcup x_j^{-1} C_j) \leq \lambda S \leq \mu S,
$$

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
where λ is as in Lemma 1, since $\bigcup x_j^{-1}C_j$ is a σ-compact subset of S. Now Lemma 1 applies, so that ν is a regular measure defined on $M(G)$; it is obvious that ν has the other properties required of a Haar measure.

(3) This statement is obvious.

(4) If H is not σ-compact, then (16.14) of [2] shows that there is a closed subset of H on which ν (and therefore μ) is not inner regular.

(5) If G/H is uncountable, then an argument easily derived from the proof of (16.14) (op. cit.) shows that there is a closed subset F of G such that $\mu F = 0$ and $\nu F = \infty$; thus $\mu U = \infty$ for any neighborhood U of F and μ is not outer regular on F.

Notes on Theorem 1. I. Statements (4) and (5) each imply that G is not σ-compact. Theorems 2 and 3, below, state conditions under which (4) and (5) can be true for the same subgroup H.

II. λ is the inner-regular “Haar measure” described in [1, Theorem 1] (and, from a different point of view, in [4, II.1])—or, more properly, the extension of this (weakly) Borel measure to $M(G)$.

III. For each S in $M(G)$, one of the following statements must always be true:

(a) $\lambda S = \mu S = \nu S$ (μ is outer regular and inner regular on S).

(b) $\lambda S < \mu S < \nu S = \infty$ (μ is not outer regular on S).

(c) $\lambda S < \mu S < \nu S = \infty$ (μ is not inner regular on S).

IV. If ν_1 were a right Haar measure, one could proceed in the same manner to obtain right-invariant measures on $M(G)$ with the desired properties, except that right cosets of H and right translates of sets would play the rôle given to left cosets and left translates in Theorem 1.

3. Lemma 3. Let G be an uncountable Abelian group. Then G contains a subgroup K such that $|K| = |G/K| = |G|$.

Proof. Let $r = |G|$.

Case 1. Suppose $r = r_0(G)$, the torsion-free rank of G. Then there exists a maximal independent torsion-free subset X of G such that $|X| = r$. Let $K = \{x^2 : x \in X\}$. As in [4, II.8], $|K| = |G/K| = r$.

Case 2. Suppose G is torsion. Since G is uncountable, it must have a subgroup G_1 of bounded order such that $|G_1| = r$. By (A.25) of [2], G_1 is the direct sum of cyclic groups; thus $G_1 = \{Y\}$ where Y is an independent set and $|Y| = r$. Let $Y = Y_1 \cup Y_2$ where $Y_1 \cap Y_2 = \emptyset$ and $|Y_1| = |Y_2| = r$; let $K = \{Y_1\}$. Then $|K| = r \geq |G/K| \geq |G_1/K| \geq |Y_2| = r$.

Case 3. Suppose $r > r_0(G)$. Let X be a maximal torsion-free independent set; let $G' = G/[X]$. G' is a torsion group and $|G'| = r$, so by
Case 2 \(G' \) has a subgroup \(K' \) such that \(|K'| = |G'/K'| = r \); let \(K \) be the subgroup of \(G \) such that \(K' = K/\langle X \rangle \). Clearly \(|K| = r \), and by the Third Isomorphism Theorem \(|G/K| = |G'/K'| = r \).

Theorem 2. Let \(G \) be a locally compact Abelian group which is not \(\sigma \)-compact. Then \(G \) has an open subgroup \(H \) such that \(H \) is not \(\sigma \)-compact and \(G/H \) is uncountable.

Proof. Let \(U \) be an open \(\sigma \)-compact subgroup of \(G \); then \(G' = G/U \) is uncountable and by Lemma 3 has a subgroup \(K' \) such that \(|K'| = |G'/K'| = |G'| \). Let \(H \) be the subgroup of \(G \) such that \(K' = H/U \). Then \(H \) is not \(\sigma \)-compact since \(H/U \) is a cover of \(H \) by uncountably many pairwise disjoint open sets. Also, \(|G/H| = |G'/K'| = |G'| \).

Theorem 3. Let \(G \) be a locally compact group which is not the union of fewer than \(\aleph_2 \) compact sets. Then \(G \) has an open subgroup \(H \) such that \(H \) is not \(\sigma \)-compact and \(G/H \) is uncountable.

Proof. Let \(U \) be a \(\sigma \)-compact open subgroup of \(G \) and let \(H \) be a subgroup of \(G \) generated by a collection of \(\aleph_1 \) cosets of \(U \). \(H \) has the desired properties.

4. **Examples (the group \(R_d \times R \)).** Let \(G \) be the group \(R_d \times R \), where \(R_d \) is the discrete reals and \(R \) is the reals with the usual topology. Let \(\lambda_0 \) be Lebesgue measure on \(R \), and for \(r \in R_d \), let \(\lambda_r(S) = \lambda_0(\{ x: (r, x) \in S \}) \). Define

\[
\lambda S = \sum \{ \lambda_r(S): r \in R_d \}.
\]

Case 1. (From [3, §12.58]). Let \(H = \{ 0 \} \times R \) and \(\nu_1 = \lambda \mid M(H) \) = Lebesgue measure on \(\{ 0 \} \times R \). Here \(H \) is \(\sigma \)-compact and \(G/H \) is uncountable, being isomorphic to \(R_d \). We have \(\lambda = \mu \), and \(\mu F_1 = 0 \), \(\nu F_1 = \infty \), where \(F_1 = R_d \times \{ 0 \} \).

Case 2. Let \(K \) be the subgroup of \(R_d \) generated by a Hamel basis over \(Q \); let \(H = K \times R \). In this case, \(H \) is not \(\sigma \)-compact and \(G/H \) is uncountable. For \(S \in M(G) \), we have

\[
\nu S = \inf \{ \lambda U: U \text{ open, } U \supseteq S \},
\]

\[
\nu_1 = \nu \mid M(H),
\]

as natural choices for Haar measures. Here,

\[
\mu S = \sum \{ \nu(S \cap (\{ r \} \times R)): r \in K_2 \}
\]

where \(K_2 \) is a subgroup of \(R_d \) such that \(R_d = K_2 \oplus K \). Let \(F_2 = K_2 \times \{ 0 \} \); then \(\lambda F_1 = 0 \), \(\mu F_1 = \nu F_1 = \infty \) and \(\lambda F_2 = \mu F_2 = 0 \), \(\nu F_2 = \infty \).
References

University of Connecticut